Hashimoto, Kei et al. published their research in Journal of the Electrochemical Society in 2021 | CAS: 112-49-2

2,5,8,11-Tetraoxadodecane (cas: 112-49-2) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. But on the other hand, ethers undergo cleavage by reaction with acids. Electron-deficient reagents are also stabilized by ethers. For example, borane (BH3) is a useful reagent for making alcohols. Pure borane exists as its dimer, diborane (B2H6), a toxic gas that is inconvenient and hazardous to use. Borane forms stable complexes with ethers, however, and it is often supplied and used as its liquid complex with tetrahydrofuran (THF).Computed Properties of C8H18O4

Design of polymer network and Li+ solvation enables thermally and oxidatively stable, mechanically reliable, and highly conductive polymer gel electrolyte for lithium batteries was written by Hashimoto, Kei;Tatara, Ryoichi;Ueno, Kazuhide;Dokko, Kaoru;Watanabe, Masayoshi. And the article was included in Journal of the Electrochemical Society in 2021.Computed Properties of C8H18O4 This article mentions the following:

Herein, we demonstrate that design of polymer network and Li+-ion solvation enables the fabrication of thermally and oxidatively stable, mech. reliable, and highly conductive polymer gel electrolytes for lithium batteries. Polymer gel electrolytes have been used for Li-ion batteries (LIB) due to their quasi-solid natures and flexible shapes. However, they frequently suffer from the high vapor pressures of the incorporated solvents, low oxidative stabilities, and poor mech. properties. To overcome these drawbacks, we fabricated a tough gel electrolyte comprising a tetra-arm poly(ethylene glycol) (TPEG) homogeneous polymer network, in which a tetraglyme(G4)-based solvate ionic liquid (SIL) was incorporated. It was intriguing to find that the solvation of Li+ ion by oxygen atoms (within G4 and TPEG), represented as [O]/[Li], governed the thermal and oxidative stabilities of the gel electrolyte, while the homogeneous network contributed to the mech. reliability and high ionic conductivity At [O]/[Li] = 5, the TPEG-based gel electrolyte with no free solvent simultaneously exhibited high thermal (>200°C) and oxidative stabilities (>4.4 V), high stretchability, and high ionic conductivity (~1 mS cm-1 at 30°C). These favorable properties of the gel electrolyte resulted in reversible charge/discharge of a 4-V-class high-voltage cathode (LiNi0.6Mn0.2Co0.2O2, NMC622). In the experiment, the researchers used many compounds, for example, 2,5,8,11-Tetraoxadodecane (cas: 112-49-2Computed Properties of C8H18O4).

2,5,8,11-Tetraoxadodecane (cas: 112-49-2) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. But on the other hand, ethers undergo cleavage by reaction with acids. Electron-deficient reagents are also stabilized by ethers. For example, borane (BH3) is a useful reagent for making alcohols. Pure borane exists as its dimer, diborane (B2H6), a toxic gas that is inconvenient and hazardous to use. Borane forms stable complexes with ethers, however, and it is often supplied and used as its liquid complex with tetrahydrofuran (THF).Computed Properties of C8H18O4

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem