Kottam, P. K. R. published the artcileEffect of salt concentration, solvent donor number and coordination structure on the variation of the Li/Li+ potential in aprotic electrolytes, Application of 2,5,8,11,14-Pentaoxapentadecane, the main research area is lithium electrolyte salt concentration solvent donor number.
The use of concentrated aprotic electrolytes in lithium batteries provides numerous potential applications, including the use of high-voltage cathodes and Li-metal anodes. In this paper, we aim at understanding the effect of salt concentration on the variation of the Li/Li+ Quasi-Reference Electrode (QRE) potential in Tetraglyme (TG)-based electrolytes. Comparing the obtained results to those achieved using DMSO DMSO-based electrolytes, we are now able to take a step forward and understand how the effect of solvent coordination and its donor number (DN) is attributed to the Li-QRE potential shift. Using a revised Nernst equation, the alteration of the Li redox potential with salt concentration was determined accurately. It is found that, in TG, the Li-QRE shift follows a different trend than in DMSO owing to the lower DN and expected shorter lifespan of the solvated cation complex.
Energies (Basel, Switzerland) published new progress about Battery cathodes. 143-24-8 belongs to class ethers-buliding-blocks, name is 2,5,8,11,14-Pentaoxapentadecane, and the molecular formula is C10H22O5, Application of 2,5,8,11,14-Pentaoxapentadecane.
Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem