Shi, Kaiyuan’s team published research in Advanced Functional Materials in 2022-08-15 | CAS: 143-24-8

Advanced Functional Materials published new progress about Adsorption. 143-24-8 belongs to class ethers-buliding-blocks, name is 2,5,8,11,14-Pentaoxapentadecane, and the molecular formula is C10H22O5, COA of Formula: C10H22O5.

Shi, Kaiyuan published the artcileElectrochemical Polishing: An Effective Strategy for Eliminating Li Dendrites, COA of Formula: C10H22O5, the main research area is lithium dendrite electrochem polishing deposition density functional theory.

Dendritic growth of lithium (Li) is well-known to originate from deposition on rough and inhomogeneous Li-metal surfaces, and has long been a central problem in charging lithium metal batteries. Herein, a universal strategy is proposed for dendrite suppression by both in situ and ex situ electrochem. polishing of Li metal from the corrosion science perspective. This polishing technique greatly smoothens the surface of the Li and dynamically regenerates a homogeneous solid electrolyte interphase film simultaneously during cell cycling, which suppresses the nucleation sites for dendritic Li and establishes an ideal matrix for even deposition of Li. As a result, the polished Li presents a stable voltage profile and high Li utilization in both the sym. cells and the full cells coupled with LiNi0.8Co0.1Mn0.1O2 (NCM811) or LiFePO4. The long cycle life of polished Li electrodes clearly demonstrates a uniform dendrite-free deposition of Li. This strategy shows a new direction to realize a uniform deposition of Li by providing a regenerative homogeneous Li-surface during repeated cycling.

Advanced Functional Materials published new progress about Adsorption. 143-24-8 belongs to class ethers-buliding-blocks, name is 2,5,8,11,14-Pentaoxapentadecane, and the molecular formula is C10H22O5, COA of Formula: C10H22O5.

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Kichambare, Padmakar’s team published research in Journal of Porphyrins and Phthalocyanines in 2022-04-30 | CAS: 143-24-8

Journal of Porphyrins and Phthalocyanines published new progress about Atmosphere. 143-24-8 belongs to class ethers-buliding-blocks, name is 2,5,8,11,14-Pentaoxapentadecane, and the molecular formula is C10H22O5, Computed Properties of 143-24-8.

Kichambare, Padmakar published the artcilePhthalocyanine as catalyst for rechargeable lithium-oxygen batteries, Computed Properties of 143-24-8, the main research area is phthalocyanine catalyst rechargeable lithium oxygen battery.

Tetrabutylammonium lithium phthalocyanine (TBA-LiPc) can function as a soluble catalyst in low-donor-number (DN) solvents such as tetraethylene glycol di-Me ether (TEGDME) (DN=16.6) for rechargeable lithium-oxygen cells. It is able to do so given that mol. oxygen forms a complex with the lithium phthalocyanine anion thereby keeping oxygen and the reaction intermediates in solution D. functional theory (DFT) calculations show the mechanism for complex formation and cyclic voltammetry results support the notion of reaction intermediates that are soluble in solution during oxygen reduction and oxygen evolution reactions. Deep discharge of a lithium-oxygen cell with TBA-LiPc had a capacity that was 3.6 times greater (5.28 mAh) than a similar cell with no TBA-LiPc (1.47 mAh). Long-term cycling of a lithium-oxygen cell with TBA-LiPc at a fixed capacity of 0.55 mAh did not fail after 100 cycles. A similar cell without TBA-LiPc failed after 37 cycles. Long-term cycling of a lithium-oxygen cell with TBA-LiPc and using natural air in low humidity as the source of oxygen cycled 151 times before cell failure.

Journal of Porphyrins and Phthalocyanines published new progress about Atmosphere. 143-24-8 belongs to class ethers-buliding-blocks, name is 2,5,8,11,14-Pentaoxapentadecane, and the molecular formula is C10H22O5, Computed Properties of 143-24-8.

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Furuya, Ryota’s team published research in Electrochemistry (Tokyo, Japan) in 2022 | CAS: 143-24-8

Electrochemistry (Tokyo, Japan) published new progress about Atmosphere. 143-24-8 belongs to class ethers-buliding-blocks, name is 2,5,8,11,14-Pentaoxapentadecane, and the molecular formula is C10H22O5, Application of 2,5,8,11,14-Pentaoxapentadecane.

Furuya, Ryota published the artcilePotential dependence of the impedance of solid electrolyte interphase in some electrolytes, Application of 2,5,8,11,14-Pentaoxapentadecane, the main research area is solid electrolyte interphase electrode potential impedance.

The dependence of the impedances of lithium phosphorus oxynitride (LiPON) thin film and solid electrolyte interphase (SEI) formed by decomposition of some electrolytes on the electrode potential was investigated by electrochem. impedance spectroscopy. A LiPON thin film was prepared on a Ni electrode by radio frequency magnetron sputtering of Li3PO4 under nitrogen atm. The resistance of the LiPON thin film decreased with lowering the electrode potential in an ionic liquid, 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide (BMPTFSA) containing 1 M LiTFSA. The similar potential dependence of the impedance of the SEI formed in 1 M LiTFSA/BMPTFSA was observed, suggesting that the Li+ carrier d. in the LiPON thin film and SEI increased with lowering the electrode potential probably due to the doping of Li+ from the electrolyte into the thin Li+ conductors in order to compensate the neg. charge on the electrode. On the other hand, the potential dependence of the SEI formed in LiTFSA-tetraglyme (G4) solvate ionic liquid was insignificant because of the high concentration of Li+ in the SEI and electrolyte. The resistance of the SEI formed in 1 M LiClO4/EC (ethylene carbonate) + DMC (di-Me carbonate) (1 : 1 vol%) did not depend on the electrode potential, suggesting the thin and highly Li+ conductive SEI is formed in the organic electrolyte.

Electrochemistry (Tokyo, Japan) published new progress about Atmosphere. 143-24-8 belongs to class ethers-buliding-blocks, name is 2,5,8,11,14-Pentaoxapentadecane, and the molecular formula is C10H22O5, Application of 2,5,8,11,14-Pentaoxapentadecane.

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Li, Jia’s team published research in Fullerenes, Nanotubes, and Carbon Nanostructures in 2020 | CAS: 143-24-8

Fullerenes, Nanotubes, and Carbon Nanostructures published new progress about Calcination. 143-24-8 belongs to class ethers-buliding-blocks, name is 2,5,8,11,14-Pentaoxapentadecane, and the molecular formula is C10H22O5, Synthetic Route of 143-24-8.

Li, Jia published the artcileBoron-doped carbon microspheres as a new catalyst for rechargeable Li-CO2 batteries, Synthetic Route of 143-24-8, the main research area is boron doped carbon microsphere lithium battery electrochem property.

Li-CO2 batteries are thought to be a promising technol. for it can combine storing energy with mitigating the “”greenhouse effect””. However, CO2 electrochem. reduction reaction is known to be a kinetically sluggish one. Therefore, researchers are committed to exploring catalysts with high catalytic activity to drive the reaction. In this study, boron-doped carbon microspheres (B-CMs) with mesoporous structure and large sp. surface area were prepared using one-step impregnation followed by calcination. Active sites are increased by the pos. charged boron atoms in B-CMs, thus, endowing higher catalytic performance for Li-CO2 batteries. The Li-CO2 battery with B-CMs cathode exhibited excellent performance, delivering a high discharge capacity of 17,429 and 11,975 at the c.d. of 200 and 500 resp., and can stably run 90 cycles at the c.d. of 200 with a limited capacity of 1000.

Fullerenes, Nanotubes, and Carbon Nanostructures published new progress about Calcination. 143-24-8 belongs to class ethers-buliding-blocks, name is 2,5,8,11,14-Pentaoxapentadecane, and the molecular formula is C10H22O5, Synthetic Route of 143-24-8.

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Robba, A.’s team published research in Journal of Physical Chemistry Letters in 2020-07-16 | CAS: 143-24-8

Journal of Physical Chemistry Letters published new progress about Composition. 143-24-8 belongs to class ethers-buliding-blocks, name is 2,5,8,11,14-Pentaoxapentadecane, and the molecular formula is C10H22O5, Safety of 2,5,8,11,14-Pentaoxapentadecane.

Robba, A. published the artcileFingerprinting Mean Composition of Lithium Polysulfide Standard Solutions by Applying High-Energy Resolution Fluorescence Detected X-ray Absorption Spectroscopy, Safety of 2,5,8,11,14-Pentaoxapentadecane, the main research area is lithium sulfur battery polysulfide solution x ray absorption spectroscopy.

In a lithium/sulfur (Li/S) battery, the reduction of sulfur during discharge involves a particular mechanism, where the active material successively dissolves into the electrolyte to form lithium polysulfide intermediate species (Li2Sx), with x being a function of the state of charge. In this work, sulfur K-edge resonant inelastic X-ray scattering measurements were performed for the characterization of different Li2Sx polysulfide standard solutions High-energy resolution fluorescence detected X-ray absorption spectroscopy allowed clear separation the pre-edge absorption peak corresponding to terminal sulfur atoms from the main absorption peak due to internal atoms and allowed quant. evaluation of the evolution of the peak area ratio as a function of the polysulfide chain length. Results of this exptl. work demonstrate that the normalized area of the pre-edge is a reliable fingerprint of the Li2Sx mean chain length in agreement with recent theor. predictions. As a perspective, this work confirms that operando HERFD XAS can be used to differentiate mean polysulfide composition, which is key issue in the characterization of Li/S cells.

Journal of Physical Chemistry Letters published new progress about Composition. 143-24-8 belongs to class ethers-buliding-blocks, name is 2,5,8,11,14-Pentaoxapentadecane, and the molecular formula is C10H22O5, Safety of 2,5,8,11,14-Pentaoxapentadecane.

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Jozwiak, Malgorzata’s team published research in Journal of Molecular Liquids in 2022-09-15 | CAS: 143-24-8

Journal of Molecular Liquids published new progress about Compression. 143-24-8 belongs to class ethers-buliding-blocks, name is 2,5,8,11,14-Pentaoxapentadecane, and the molecular formula is C10H22O5, Recommanded Product: 2,5,8,11,14-Pentaoxapentadecane.

Jozwiak, Malgorzata published the artcileCompression of selected glymes in N,N-dimethylformamide + water. The hydration numbers and hydrophobic hydration process of glymes, Recommanded Product: 2,5,8,11,14-Pentaoxapentadecane, the main research area is glyme DMF water hydrophobic hydration number compression process.

This paper presents the speed of sound in selected glymes (monoglyme, diglyme, triglyme and tetraglyme) in N,N-dimethylformamide + water mixed solvent at four temperatures: 293.15 K, 298.15 K, 303.15 K and 308.15 K. The data obtained were used to calculate the values of isentropic compressibility (κS) of glymes solutions and apparent molar isentropic compression (KS,Φ,m), as well as the limiting partial molar isentropic compression (K0S,m) of glymes in the mixed solvent (DMF + W). Changes in the obtained values of the physicochem. parameters, as functions of temperature or mole fraction of water in the mixed solvent, were analyzed in terms of the mol. interactions and structural differentiation of the investigated systems. The hydrophobic hydration process of the studied glymes is visible in the high water content area of the mixed solvent. The hydration number of glymes in water at four temperatures was calculated and analyzed.

Journal of Molecular Liquids published new progress about Compression. 143-24-8 belongs to class ethers-buliding-blocks, name is 2,5,8,11,14-Pentaoxapentadecane, and the molecular formula is C10H22O5, Recommanded Product: 2,5,8,11,14-Pentaoxapentadecane.

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Dorai, Arunkumar’s team published research in Electrochemistry Communications in 2022-08-31 | CAS: 143-24-8

Electrochemistry Communications published new progress about Dissolution. 143-24-8 belongs to class ethers-buliding-blocks, name is 2,5,8,11,14-Pentaoxapentadecane, and the molecular formula is C10H22O5, Quality Control of 143-24-8.

Dorai, Arunkumar published the artcileVisualization of polysulfide dissolution in lithium-sulfur batteries using in-situ NMR microimaging, Quality Control of 143-24-8, the main research area is lithium sulfur battery magnetic resonance imaging.

Lithium-sulfur batteries offer the highest theor. energy d. among enclosed rechargeable batteries. However, there are various issues that need to be addressed before their practical adoption, such as the dissolution of intermediate lithium polysulfides (Li2Sn) into the electrolyte solution, which causes rapid degradation of the battery. Herein, we used NMR (NMR) and in-situ magnetic resonance imaging (MRI) to visualize the dissolution of the intermediate species formed during the discharge-charge process in Li-S batteries. A strong enhancement in the MRI signal was observed when the cell was first discharged, which is associated with the dissolution of intermediate polysulfides. To determine the origin of this signal enhancement, 1H NMR spectra, T1 relaxation time, and ESR (ESR) measurements were performed on electrolyte containing polysulfides. The origin of the strong enhancement of the MRI signal by the dissoluted polysulfides is mainly attributed to the paramagnetic interaction due to the formation of S*-3 and S*-4 radicals in the dissoluted polysulfides. The results demonstrate that 1H MRI is an indirect and effective way to study and visualize the intermediate species formed during Li-S battery operation.

Electrochemistry Communications published new progress about Dissolution. 143-24-8 belongs to class ethers-buliding-blocks, name is 2,5,8,11,14-Pentaoxapentadecane, and the molecular formula is C10H22O5, Quality Control of 143-24-8.

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Nagumo, Ryo’s team published research in Industrial & Engineering Chemistry Research in 2021-09-15 | CAS: 143-24-8

Industrial & Engineering Chemistry Research published new progress about Absorbents. 143-24-8 belongs to class ethers-buliding-blocks, name is 2,5,8,11,14-Pentaoxapentadecane, and the molecular formula is C10H22O5, Related Products of ethers-buliding-blocks.

Nagumo, Ryo published the artcileCorrelation between Macroscopic Diffusion Rates and Microscopic Interactions in Ethylene Glycol-Based Solvents, Related Products of ethers-buliding-blocks, the main research area is diffusion residence time ethylene glycol based solvent MD simulation.

An evaluation of mol. interactions is important for estimating macroscopic properties, such as solubility and diffusivity. In this study, for several types of ethylene glycol-based absorbents, we discuss the correlation between a macroscopic property (mol. diffusivity) and a microscopic criterion (residence time) using mol. dynamics simulations for pure solvent systems and CO2-loaded solvent systems. The neg. correlations between the diffusivity and the residence time can be divided into categories, depending on the number of constituent hydroxy groups of the solvent mols. The disparity between the categories arises from whether hydrogen bonding can be formed between the solvent mols. This study leads to the systematic estimation of the mol. diffusivity from the theor. prediction of the residence time. We believe that the residence time is suitable as a criterion to evaluate macroscopic properties.

Industrial & Engineering Chemistry Research published new progress about Absorbents. 143-24-8 belongs to class ethers-buliding-blocks, name is 2,5,8,11,14-Pentaoxapentadecane, and the molecular formula is C10H22O5, Related Products of ethers-buliding-blocks.

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Wang, Qin’s team published research in Journal of Cleaner Production in 2020-12-20 | CAS: 143-24-8

Journal of Cleaner Production published new progress about Absorbents. 143-24-8 belongs to class ethers-buliding-blocks, name is 2,5,8,11,14-Pentaoxapentadecane, and the molecular formula is C10H22O5, COA of Formula: C10H22O5.

Wang, Qin published the artcileTheoretical investigations on the cycle performance of a single-pressure diffusion absorption heat transformer with LiBr-H2O-R134a-TEGDME, COA of Formula: C10H22O5, the main research area is LiBr water tetrafluoroethane TEGDME pressure diffusion absorption heat transformer.

A simulation model using the first thermodn. law is first proposed to estimate the performance of diffusion absorption heat transformer, which could potentially improve energy utilization efficiency and reduce CO2 emission. Thermodn. analyses are performed to investigate the cycle performance when H2O is employed as refrigerant, LiBr as absorbent for H2O, R134a as diffusion gas and TEGDME as absorbent for R134a. Analyses aim to optimize system COP under specified temperature of two generators, two absorbers, evaporator and condenser, and compare the influence of the six temperatures on COP. The results under design conditions show that larger generation efficiency of R134a and smaller mass fraction of LiBr in H2O-LiBr solution are beneficial to COP improvement, but they are limited by the operating conditions. There is an optimal ratio of H2O-LiBr solution mass flow rate to R134a mass flow rate for an optimal COP, and the optimal ratio decreases with the increase of LiBr mass fraction in H2O-LiBr solution The highest COP of 0.1701 is reached with the optimal ratio of 1.743. In addition, under design-off conditions, the temperatures of refrigerant generator and evaporator have the greatest influence on COP while the temperature of diffusion gas generator has the least influence. The diffusion absorption heat transformer will provide a new way to lift temperature of low grade heat without electricity input which can further improve the energy utilization efficiency and reduce the CO2 emission.

Journal of Cleaner Production published new progress about Absorbents. 143-24-8 belongs to class ethers-buliding-blocks, name is 2,5,8,11,14-Pentaoxapentadecane, and the molecular formula is C10H22O5, COA of Formula: C10H22O5.

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Shi, Wei’s team published research in Journal of Physical Chemistry B in 2021-12-16 | CAS: 143-24-8

Journal of Physical Chemistry B published new progress about Absorbents. 143-24-8 belongs to class ethers-buliding-blocks, name is 2,5,8,11,14-Pentaoxapentadecane, and the molecular formula is C10H22O5, Recommanded Product: 2,5,8,11,14-Pentaoxapentadecane.

Shi, Wei published the artcileComputational Screening of Physical Solvents for CO2 Pre-combustion Capture, Recommanded Product: 2,5,8,11,14-Pentaoxapentadecane, the main research area is computational screening solvent carbon dioxide absorption precombustion.

A computational scheme was used to screen phys. solvents for CO2 pre-combustion capture by integrating the com. NIST database, an inhouse computational database, chem-informatics, and mol. modeling. A com. available screened hydrophobic solvent, di-Et sebacate, was identified from the screening with favorable phys. properties and promising absorption performance. The promising performance to use di-Et sebacate in CO2 pre-combustion capture has also been confirmed from experiments Water loading in di-Et sebacate is very low, and therefore, water is kept with H2 in the gas stream. The favorable CO2 interaction with di-Et sebacate and the intermediate solvent free volume fraction leads to both high CO2 solubility and high CO2/H2 solubility selectivity in di-Et sebacate. An inhouse NETL computational database was built to characterize CO2, H2, N2, and H2O interactions with 202 different chem. functional groups. It was found that 13% of the functional groups belong to the strong interaction category with the CO2 interaction energy between -15 and -21 kJ/mol; 62% of the functional groups interact intermediately with CO2 (-8 to -15 kJ/mol). The remaining 25% of functional groups interact weakly with CO2 (below -8 kJ/mol). In addition, calculations show that CO2 interactions with the functional groups are stronger than N2 and H2 interactions but are weaker than H2O interactions. The CO2 and H2O interactions with the same functional groups exhibit a very strong linear pos. correlation coefficient of 0.92. The relationship between CO2 and H2 gas solubilities and solvent fractional free volume (FFV) has been systematically studied for seven solvents at 298.2 K. A skewed bell-shaped relation was obtained between CO2 solubility and solvent FFV. When an organic compound has a d. approx. 10% lower than its d. at 298.2 K and 1 bar, it exhibits the highest CO2 loading at that specific solvent d. and FFV. Note that the solvent densities were varied using simulations, which are difficult to be obtained from the experiment In contrast, H2 solubility results exhibit an almost perfect pos. linear correlation with the solvent FFV. The theor. maximum and min. phys. CO2 solubilities in any organic compound at 298.2 K were estimated to be 11 and 0.4 mol/MPa L, resp. An examination of 182 exptl. CO2 phys. solubility data and 29 simulated CO2 phys. solubilities shows that all the CO2 phys. solubility data are within the maximum and min. with only a few exceptions. Finally, simulations suggest that in order to develop phys. solvents with both high CO2 solubility and high CO2/H2 solubility selectivity, the solvents should contain functional groups which are available to interact strongly with CO2 while minimizing FFV.

Journal of Physical Chemistry B published new progress about Absorbents. 143-24-8 belongs to class ethers-buliding-blocks, name is 2,5,8,11,14-Pentaoxapentadecane, and the molecular formula is C10H22O5, Recommanded Product: 2,5,8,11,14-Pentaoxapentadecane.

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem