Murthy, A. V. R. published the artcileProbing the Role of Chain Length on the Diffusion Dynamics of π-Conjugated Polymers by Fluorescence Correlation Spectroscopy, Application In Synthesis of 146370-51-6, the publication is Journal of Physical Chemistry B (2011), 115(37), 10779-10788, database is CAplus and MEDLINE.
We investigate the role of the chain length and mol. weight distribution on the diffusion dynamics of freshly synthesized MEH-PPV polymer chains. For the above purpose, a new technique based on combination of size exclusion chromatog. (SEC) with fluorescence correlation spectroscopy (FCS) is developed to probe the diffusion dynamics of a narrow mol. weight distribution of fractionated samples of 20-500 kDa. The narrow dispersed samples were characterized by absorbance, emission, and time-resolved fluorescence decay techniques. The results revealed that the properties of fractionated samples were almost uniform for a wide range of mol. weights A maximum entropy based method for FCS data anal. is employed to obtain the correct diffusion coefficients of the polymer chains with heterogeneous dynamics. The FCS experiment on the unfractionated broad mol. weight sample is not enough to establish the correlation between the mol. weight of the chains with diffusion dynamics and emphasized the need for relatively monodispersed π-conjugated polymers. FCS results show that higher mol. weight chains diffuse much faster than shorter ones. Atomic force microscopy revealed that 300 kDa polymers produced 130 nm particles, whereas 50 kDa polymer chains formed micrometer size aggregates. At higher mol. weights, the strong chain interactions promote the formation of globular (or tightly packed) particles which diffuse faster in solution The low mol. weight chains experience strong interparticle interaction; as a consequence, the diffusion of chains becomes slower. In the present investigation, we demonstrate the need for the narrow polydisperse sample for establishing the correlation between diffusion dynamics and chain length (or mol. weights) of π-conjugated polymers using a single mol. spectroscopy technique such as FCS.
Journal of Physical Chemistry B published new progress about 146370-51-6. 146370-51-6 belongs to ethers-buliding-blocks, auxiliary class Benzene,Ether, name is 1-((2-Ethylhexyl)oxy)-4-methoxybenzene, and the molecular formula is C15H24O2, Application In Synthesis of 146370-51-6.
Referemce:
https://en.wikipedia.org/wiki/Ether,
Ether | (C2H5)2O – PubChem