Share a compound : 588-96-5

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. We look forward to the emergence of more reaction modes in the future.

Researchers who often do experiments know that organic synthesis is a process of preparing more complex target molecules from simple raw materials through one or more chemical reactions. Generally, it requires fewer steps, and cheap raw materials. 588-96-5, name is p-Bromophenetole, A new synthetic method of this compound is introduced below., Recommanded Product: p-Bromophenetole

(1) A small amount of iodine was added to a suspension of 1-bromo-4-ethoxybenzene (484 muL) and magnesium (82.3 mg) in THF at room temperature in a nitrogen atmosphere, and the mixture was stirred at 50 C. for one hour. The reaction solution was returned to room temperature and a solution of 5-cyclopropyl-6-methoxypyridine-2-carbaldehyde (300 mg) in tetrahydrofuran (1 mL) was added, followed by stirring at 50 C. for one hour. Tetrahydrofuran was concentrated under reduced pressure and a saturated ammonium chloride solution was added, followed by extraction with ethyl acetate. The organic layer was filtered through diatomaceous earth, and then the solvent was concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography (hexane:ethyl acetate=50:1?9:1) to give (5-cyclopropyl-6-methoxypyridin-2-yl)(4-ethoxyphenyl)methanol as a yellow oil (438 mg, 86%).

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. We look forward to the emergence of more reaction modes in the future.

Reference:
Patent; TAISHO PHARMACEUTICAL CO., LTD; NISSAN CHEMICAL INDUSTRIES, LTD.; US2011/237791; (2011); A1;,
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Research on new synthetic routes about 588-96-5

The synthetic route of p-Bromophenetole has been constantly updated, and we look forward to future research findings.

588-96-5, A common heterocyclic compound, 588-96-5, name is p-Bromophenetole, molecular formula is C8H9BrO, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route.

General procedure: b.Cyanation of aryl bromides. To a solution of arylbromide (0.5 mmol) in EtOH (5.0 mL) was added NCTS (272 mg, 1.0 mmol), PdCl2 (13.3 mg, 0.075 mmol), and Ag2O (57.75 mg, 0.5 mmol). The mixture was stirred at 70 for 24 hunder air atmosphere. Then the reaction mixture was cooled to room temperature and filtered through a pad of celite (1.0 g) and rinsed with CH2Cl2 (10.0 mL). The resulting organic solution was concentrated under reduced pressure and further purified by flash chromatography (SiO2,petroleum ether/EtOAc gradient), yielding the corresponding aryl nitriles.

The synthetic route of p-Bromophenetole has been constantly updated, and we look forward to future research findings.

Reference:
Article; Li, Jizhen; Xu, Wenbin; Ding, Junshuai; Lee, Kuo-Hsiung; Tetrahedron Letters; vol. 57; 11; (2016); p. 1205 – 1209;,
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

The important role of p-Bromophenetole

According to the analysis of related databases, 588-96-5, the application of this compound in the production field has become more and more popular.

588-96-5, Adding a certain compound to certain chemical reactions, such as: 588-96-5, name is p-Bromophenetole, belongs to ethers-buliding-blocks compound, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound 588-96-5.

General procedure: A mixture of aryl halide (0.25 mmol), phenylboronicacid (0.3 mmol), Na2CO3 (0.25 mmol), PPh3 (0.025 mmol)and Pd(at)PAAs-CD (0.5 mg, 0.2 mol% Pd per mol of arylhalide) were placed into a 10 mL Schlenck tube with1 mL H2O. The reaction mixture was reacted at 80 C for18 h, and the reaction progress was monitored via gaschromatography mass spectrometry (GC-MS). The reactionmixture was allowed to cool to room temperature, andthen 3 mL water was added, and the product was extractedwith ethyl acetate (3 mL ¡Á 3). The organic layers werecombined and dried over anhydrous Na2SO4 and solventswere evaporated via rotary evaporator. The crude productwas purified by column chromatography (200-300 meshsilica) using a mixture of petroleum ether/ethyl acetate(10:1, v:v) as eluent. The structures of the products wereconfirmed by 1H NMR and 13C NMR spectroscopies.

According to the analysis of related databases, 588-96-5, the application of this compound in the production field has become more and more popular.

Reference:
Article; Zhang, Wei; Yao, Zi-Jian; Deng, Wei; Journal of the Brazilian Chemical Society; vol. 30; 8; (2019); p. 1667 – 1677;,
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

The important role of 588-96-5

Statistics shows that 588-96-5 is playing an increasingly important role. we look forward to future research findings about p-Bromophenetole.

588-96-5, name is p-Bromophenetole, belongs to ethers-buliding-blocks compound, is considered to be a conventional heterocyclic compound, which is widely used in drug synthesis. The chemical synthesis route is as follows. 588-96-5

General procedure: The Teflon-lined sealed tube (20 mL) was charged with a 1,4-dioxane solution of sodium fluoroalkoxide RFONa [freshly prepared from fluoroalkanol RFOH (3.3(n + 1) mmol) and Na (3.0 (n + 1) mmol) in 1,4-dioxane (5 mL)], unactivated arylbromide ArBrn (3.0 mmol), CuBr (0.3n mmol) and DMF (3.0n mmol). The sealed tube was heated to 110 C and stirred for 6 h. After the completion of reaction, the concentration of the mixture in vacuo gave a residue, to which was added methyl tert-butyl ether (MTBE, 20 mL) and diluted hydrochloric acid (10 mL, 1.0 mol/L). The organic phase was separated, and the aqueous phase was extracted with MTBE (10 mL 9 3). The combined organic layer was dried over anhydrous MgSO4, andthen concentrated in vacuo to supply a crude product. Lastly, the purification of the crude product provided the desired product via column chromatography on silica gel (eluents: petroleum ether/ethyl acetate 20:1).

Statistics shows that 588-96-5 is playing an increasingly important role. we look forward to future research findings about p-Bromophenetole.

Reference:
Article; Guo, Ying; Li, Yu-Dao; Chen, Cheng; Zhao, Jian-Hong; Liu, Hong-Wei; Liao, Dao-Hua; Ji, Ya-Fei; Research on Chemical Intermediates; vol. 42; 3; (2016); p. 2525 – 2537;,
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Extended knowledge of p-Bromophenetole

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles, p-Bromophenetole, other downstream synthetic routes, hurry up and to see.

588-96-5, A common compound: 588-96-5, name is p-Bromophenetole, belongs to ethers-buliding-blocks compound, it can change the direction of chemical reaction, and react with certain compounds to generate new functional products. A new synthetic method of this compound is introduced below.

General procedure: The Teflon-lined sealed tube (20 mL) was charged with a 1,4-dioxane solution of sodium fluoroalkoxide RFONa [freshly prepared from fluoroalkanol RFOH (3.3(n + 1) mmol) and Na (3.0 (n + 1) mmol) in 1,4-dioxane (5 mL)], unactivated arylbromide ArBrn (3.0 mmol), CuBr (0.3n mmol) and DMF (3.0n mmol). The sealed tube was heated to 110 C and stirred for 6 h. After the completion of reaction, the concentration of the mixture in vacuo gave a residue, to which was added methyl tert-butyl ether (MTBE, 20 mL) and diluted hydrochloric acid (10 mL, 1.0 mol/L). The organic phase was separated, and the aqueous phase was extracted with MTBE (10 mL 9 3). The combined organic layer was dried over anhydrous MgSO4, andthen concentrated in vacuo to supply a crude product. Lastly, the purification of the crude product provided the desired product via column chromatography on silica gel (eluents: petroleum ether/ethyl acetate 20:1).

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles, p-Bromophenetole, other downstream synthetic routes, hurry up and to see.

Reference:
Article; Guo, Ying; Li, Yu-Dao; Chen, Cheng; Zhao, Jian-Hong; Liu, Hong-Wei; Liao, Dao-Hua; Ji, Ya-Fei; Research on Chemical Intermediates; vol. 42; 3; (2016); p. 2525 – 2537;,
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

The origin of a common compound about 588-96-5

The chemical industry reduces the impact on the environment during synthesis 588-96-5. I believe this compound will play a more active role in future production and life.

The chemical industry reduces the impact on the environment during synthesis 588-96-5, name is p-Bromophenetole, I believe this compound will play a more active role in future production and life. 588-96-5

General procedure: In air, aryl halide (0.2 mmol), arylboronic acid (0.22 mmol),K2CO3 (0.3 mmol), 5 ml of distilled water, and 2 mg of catalystwere combined in a 10 ml round bottom flask. The reactionmixture was magnetically stirred and the temperature wasmaintained at 75 C in an oil bath. Reaction progress was monitoredby TLC. After reaction was completed, the reaction mixturewas cooled to room temperature and filtrated. The filtratedsolid was washed with water (35 ml) and dissolved withethyl acetate. The catalyst was separated by filtration, washedwith water, and dried in vacuum. The combined organic phasewas dried with anhydrous MgSO4, and the solvent was removedunder reduced pressure to give the product.

The chemical industry reduces the impact on the environment during synthesis 588-96-5. I believe this compound will play a more active role in future production and life.

Reference:
Article; Ma, Hengchang; Bao, Zhikang; Han, Guobin; Yang, Ningning; Xu, Yufei; Yang, Zengming; Cao, Wei; Ma, Yuan; Cuihua Xuebao/Chinese Journal of Catalysis; vol. 34; 3; (2013); p. 578 – 584;,
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem