Taydakov, I. V. et al. published their research in Chemistry of Heterocyclic Compounds (New York, NY, United States) in 2011 | CAS: 5367-32-8

3-Methyl-4-nitroanisole (cas: 5367-32-8) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. But on the other hand, ethers undergo cleavage by reaction with acids. At room temperature, ethers are pleasant-smelling colourless liquids. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil.Reference of 5367-32-8

Convenient modification of the Leimgruber-Batcho indole synthesis: reduction of 2-nitro-灏?pyrrolidinostyrenes by the FeCl3-activated carbon-N2H4.H2O system was written by Taydakov, I. V.;Dutova, T. Ya.;Sidorenko, E. N.;Krasnoselsky, S. S.. And the article was included in Chemistry of Heterocyclic Compounds (New York, NY, United States) in 2011.Reference of 5367-32-8 This article mentions the following:

A new catalytic system containing FeCl3, activated C, and N2H4 was proposed for the reductive cyclization of 灏?(dialkylamino)-2-nitrostyrenes to give the corresponding indoles (Leimgruber-Batcho synthesis). Various substituted indoles may be obtained in high yield under these conditions. In the experiment, the researchers used many compounds, for example, 3-Methyl-4-nitroanisole (cas: 5367-32-8Reference of 5367-32-8).

3-Methyl-4-nitroanisole (cas: 5367-32-8) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. But on the other hand, ethers undergo cleavage by reaction with acids. At room temperature, ethers are pleasant-smelling colourless liquids. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil.Reference of 5367-32-8

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Chen, Teng et al. published their research in Fuel in 2022 | CAS: 111-77-3

2-(2-Methoxyethoxy)ethanol (cas: 111-77-3) belongs to ethers. The oxygen atom in ethers are more electronegative than carbon, thus the hydrogens which are alpha to the ethers are more acidic than the simple hydrocarbons. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides.Quality Control of 2-(2-Methoxyethoxy)ethanol

Water behavior of current jet fuel versus operating conditions: Storage time, temperature, relative humidity and anti-icing agent was written by Chen, Teng;Xu, Xin;Hu, Jianqiang;Guo, Li;Yang, Shizhao;Zhao, Tianxiang;Ma, Jun. And the article was included in Fuel in 2022.Quality Control of 2-(2-Methoxyethoxy)ethanol This article mentions the following:

Water contamination in aviation jet fuel has been a particular concern throughout the aviation industry for many decades on account of any contaminating water may accelerate the corrosion of the aircraft fuel systems, diminish the lubricative properties of the fuel, promote microorganism growth, and more importantly, pose threat to flight safety. However, the water behavior of jet fuel has not been studied systematically so far, especially for the free water, which is the main factor that causes the hazards mentioned above. Herein, the water behaviors, including dissolved and free water behaviors vs. storage time, temperature, relative humidity and anti-icing agent are investigated. Compared with storage time, temperature and relative humidity have a greater influence on the water solubility, and the resp. exponential and linear relationships between the solubility of water and temperature and relative humidity are identified in this paper. Furthermore, a complete discussion is carried out on the effect of anti-icing agent on the solubility of water and free water content in jet fuel. More importantly, the real water behavior of jet fuel with anti-icing agent is also studied through simulating the variation in temperature during flight. In the experiment, the researchers used many compounds, for example, 2-(2-Methoxyethoxy)ethanol (cas: 111-77-3Quality Control of 2-(2-Methoxyethoxy)ethanol).

2-(2-Methoxyethoxy)ethanol (cas: 111-77-3) belongs to ethers. The oxygen atom in ethers are more electronegative than carbon, thus the hydrogens which are alpha to the ethers are more acidic than the simple hydrocarbons. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides.Quality Control of 2-(2-Methoxyethoxy)ethanol

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Chang, Meng-Yang et al. published their research in Synthesis in 2021 | CAS: 57179-35-8

3-Hydroxy-5-methoxybenzaldehyde (cas: 57179-35-8) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive. Autoxidation is the spontaneous oxidation of a compound in air. In the presence of oxygen, ethers slowly autoxidize to form hydroperoxides and dialkyl peroxides. If concentrated or heated, these peroxides may explode. To prevent such explosions, ethers should be obtained in small quantities, kept in tightly sealed containers, and used promptly.Safety of 3-Hydroxy-5-methoxybenzaldehyde

tBuO2H/Cu(acac)2-Mediated Intramolecular Oxidative Lactonization of o-Allyl Arylaldehydes: Synthesis of 1-Oxoisochromans was written by Chang, Meng-Yang;Lai, Kai-Xiang;Chen, Kuan-Ting. And the article was included in Synthesis in 2021.Safety of 3-Hydroxy-5-methoxybenzaldehyde This article mentions the following:

A concise route for tBuO2H/Cu(acac)2-mediated synthesis of 1-oxoisochromans such as I (R = H, Me; R1 = CHO, H, Ac) is described. This includes: (i) oxidation of oxygenated o-allyl arylaldehydes 2-CH(R)CHCH2-3-R2-4-R3-5-R4C6H (R2 = H, OMe, OBn, cyclopentyloxy, etc.; R3 = H, OMe; R4 = H, OMe) and (ii) sequential intramol. lactonization of the resulting olefin-containing benzoic acids. A plausible mechanism is proposed and discussed. In the experiment, the researchers used many compounds, for example, 3-Hydroxy-5-methoxybenzaldehyde (cas: 57179-35-8Safety of 3-Hydroxy-5-methoxybenzaldehyde).

3-Hydroxy-5-methoxybenzaldehyde (cas: 57179-35-8) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive. Autoxidation is the spontaneous oxidation of a compound in air. In the presence of oxygen, ethers slowly autoxidize to form hydroperoxides and dialkyl peroxides. If concentrated or heated, these peroxides may explode. To prevent such explosions, ethers should be obtained in small quantities, kept in tightly sealed containers, and used promptly.Safety of 3-Hydroxy-5-methoxybenzaldehyde

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Saraidaridis, James D. et al. published their research in Journal of the Electrochemical Society in 2020 | CAS: 111-77-3

2-(2-Methoxyethoxy)ethanol (cas: 111-77-3) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive. Ethers feature bent C–O–C linkages. In dimethyl ether, the bond angle is 111° and C–O distances are 141 pm. The barrier to rotation about the C–O bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.Synthetic Route of C5H12O3

High-voltage metal-free disproportionation flow batteries based on 9,10-diphenylanthracene was written by Saraidaridis, James D.;Suttil, James A.;Monroe, Charles W.. And the article was included in Journal of the Electrochemical Society in 2020.Synthetic Route of C5H12O3 This article mentions the following:

Several metal-free, nonaqueous, disproportionation redox-flow-battery chemistries based on electrochem. active organic mols. are presented. The electrochem. of 9,10-diphenylanthracene (DPA), a polycyclic aromatic compound, involves two reversible redox couples separated by more than 3 V, which are associated with electrochem. disproportionation of the neutral mol. Nonaqueous solvents are investigated with the dual aims of realizing this high voltage in a battery cell and maximizing active-species solubility Functionalized DPA analogs are synthesized and shown to exhibit electrochem. responses similar to pristine DPA; appending diethyleneglycoxy esters on each Ph group to form DdPA (9,10-Bis(4-(2-(2-methoxyethoxy)ethoxy)carbonyl-phenyl)anthracene) improves solubility over DPA by a factor of 20 in acetonitrile and 5 in dimethoxyethane. The 0.21 M maximum concentration of DdPA in dimethoxyethane suggests an energy d. of 8 Wh l-1, which begins to approach the energy d. of state-of-the-art aqueous RFBs. Charge/discharge of a stagnant one-dimensional cell delivers the highest cell voltages from an organic single-active-species RFB chem. yet reported. Energy and power efficiencies for DPA in dimethoxyethane and DdPA in acetonitrile are similar to nonaqueous vanadium acetylacetonate in cells of similar construction. In the experiment, the researchers used many compounds, for example, 2-(2-Methoxyethoxy)ethanol (cas: 111-77-3Synthetic Route of C5H12O3).

2-(2-Methoxyethoxy)ethanol (cas: 111-77-3) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive. Ethers feature bent C–O–C linkages. In dimethyl ether, the bond angle is 111° and C–O distances are 141 pm. The barrier to rotation about the C–O bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.Synthetic Route of C5H12O3

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Xu, Xiao-Long et al. published their research in Organic Letters in 2019 | CAS: 605-94-7

2,3-Dimethoxy-5-methylcyclohexa-2,5-diene-1,4-dione (cas: 605-94-7) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. But ether is more polar than alkenes. At room temperature, ethers are pleasant-smelling colourless liquids. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil.Product Details of 605-94-7

Catalytic Redox Chain Ring Opening of Lactones with Quinones To Synthesize Quinone-Containing Carboxylic Acids was written by Xu, Xiao-Long;Li, Zhi. And the article was included in Organic Letters in 2019.Product Details of 605-94-7 This article mentions the following:

Catalytic ring opening of five- to eight-membered lactones with quinones is achieved through a redox chain mechanism. With low loading of a simple metal triflate Lewis acid catalyst and a chain initiator, C-H bonds of many quinones were efficiently functionalized with carboxylic acid-containing side chains. This method also features 100% atom economy and wide substrate scope. A novel route to the anti-asthma drug Seratrodast was developed. Mechanism study suggests that the redox chain reaction likely undergoes a carbocation intermediate. In the experiment, the researchers used many compounds, for example, 2,3-Dimethoxy-5-methylcyclohexa-2,5-diene-1,4-dione (cas: 605-94-7Product Details of 605-94-7).

2,3-Dimethoxy-5-methylcyclohexa-2,5-diene-1,4-dione (cas: 605-94-7) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. But ether is more polar than alkenes. At room temperature, ethers are pleasant-smelling colourless liquids. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil.Product Details of 605-94-7

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Kiel, Gavin R. et al. published their research in Journal of the American Chemical Society in 2017 | CAS: 16356-02-8

1,4-Dimethoxy-2-butyne (cas: 16356-02-8) belongs to ethers. The oxygen atom in ethers are more electronegative than carbon, thus the hydrogens which are alpha to the ethers are more acidic than the simple hydrocarbons. Ethers can form hydrogen bonds with other molecules (alcohols, amines, etc.) that have O―H or N―H bonds. The ability to form hydrogen bonds with other compounds makes ethers particularly good solvents for a wide variety of organic compounds and a surprisingly large number of inorganic compounds.Safety of 1,4-Dimethoxy-2-butyne

Expanded Helicenes: A General Synthetic Strategy and Remarkable Supramolecular and Solid-State Behavior was written by Kiel, Gavin R.;Patel, Sajan C.;Smith, Patrick W.;Levine, Daniel S.;Tilley, T. Don. And the article was included in Journal of the American Chemical Society in 2017.Safety of 1,4-Dimethoxy-2-butyne This article mentions the following:

A divergent synthetic strategy allowed access to several members of a new class of helicenes, the “expanded helicenes”, which are composed of alternating linearly and angularly fused rings. The strategy is based on a three-fold, partially intermol. [2+2+n] (n = 1 or 2) cycloaddition with substrates containing three diyne units. Investigation of aggregation behavior, both in solution and in the solid state, revealed that one of these compounds forms an unusual homochiral, π-stacked dimer via an equilibrium that is slow on the NMR time scale. The versatility of the method was harnessed to access a selenophene-annulated expanded helicene that, in contrast to its benzannulated analog, exhibits long-range π-stacking in the solid state. The new helicenes possess low racemization barriers, as demonstrated by dynamic 1H NMR spectroscopy. In the experiment, the researchers used many compounds, for example, 1,4-Dimethoxy-2-butyne (cas: 16356-02-8Safety of 1,4-Dimethoxy-2-butyne).

1,4-Dimethoxy-2-butyne (cas: 16356-02-8) belongs to ethers. The oxygen atom in ethers are more electronegative than carbon, thus the hydrogens which are alpha to the ethers are more acidic than the simple hydrocarbons. Ethers can form hydrogen bonds with other molecules (alcohols, amines, etc.) that have O―H or N―H bonds. The ability to form hydrogen bonds with other compounds makes ethers particularly good solvents for a wide variety of organic compounds and a surprisingly large number of inorganic compounds.Safety of 1,4-Dimethoxy-2-butyne

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Subba Rami Reddy, S. R. et al. published their research in Pharma Chemica in 2015 | CAS: 5367-32-8

3-Methyl-4-nitroanisole (cas: 5367-32-8) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. But on the other hand, ethers undergo cleavage by reaction with acids. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides.Related Products of 5367-32-8

Synthesis and biological evaluation of indoles was written by Subba Rami Reddy, S. R.;Suryanarayana Rao, V.;Subba Narayana, Kanchana. And the article was included in Pharma Chemica in 2015.Related Products of 5367-32-8 This article mentions the following:

Objective of this research was to synthesize and characterize indole derivatives Indole nucleus has antimicrobial activities. Different kind of indole ring derivatives were synthesized such as 3-((E)-2-nitrovinyl)-1H-indole, 2-(1H-indol-3-yl)ethanamine, N-(2-(1H-indol-3-yl)ethyl)benzamide, Me 2-(3-(2-(benzamido)ethyl)-1H-indol-1-yl)acetate, 2-(3-(2-(benzamido)ethyl)-1H-indol-1-yl)acetic acid, N-(2-(1-((2,3-dihydro-1H-inden-5-yl-carbamoyl)methyl)-1H-indol-3-yl)ethyl)benzamide, e.g., I [R = 4-indanyl, 5-indanyl]. Antifungal activity of compounds I [R = 4-indanyl, 5-indanyl] were also studied. In the experiment, the researchers used many compounds, for example, 3-Methyl-4-nitroanisole (cas: 5367-32-8Related Products of 5367-32-8).

3-Methyl-4-nitroanisole (cas: 5367-32-8) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. But on the other hand, ethers undergo cleavage by reaction with acids. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides.Related Products of 5367-32-8

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Prince, Roger C. et al. published their research in Biochimica et Biophysica Acta, Bioenergetics in 2022 | CAS: 605-94-7

2,3-Dimethoxy-5-methylcyclohexa-2,5-diene-1,4-dione (cas: 605-94-7) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. But on the other hand, ethers undergo cleavage by reaction with acids. Ethers can form hydrogen bonds with other molecules (alcohols, amines, etc.) that have O―H or N―H bonds. The ability to form hydrogen bonds with other compounds makes ethers particularly good solvents for a wide variety of organic compounds and a surprisingly large number of inorganic compounds.HPLC of Formula: 605-94-7

The aprotic electrochemistry of quinones was written by Prince, Roger C.;Dutton, P. Leslie;Gunner, M. R.. And the article was included in Biochimica et Biophysica Acta, Bioenergetics in 2022.HPLC of Formula: 605-94-7 This article mentions the following:

Quinones play important roles in biol. electron transfer reactions in almost all organisms, with specific roles in many physiol. processes and chemotherapy. Quinones participate in two-electron, two-proton reactions in aqueous solution at equilibrium near neutral pH, but protons often lag behind the electron transfers. The relevant reactions in proteins are often sequential one electron redox processes without involving protons. Here author report the aprotic electrochem. of the two half-couples, Q/Q.- and Q.-/Q=, of 11 parent quinones and 118 substituted 1,4-benzoquinones, 91 1,4-naphthoquinones, and 107 9,10-anthraquinones. The measured redox potentials are fit quite well with the Hammett para sigma (σpara) parameter. Occasional exceptions can involve important groups, such as methoxy substituents in ubiquinone and hydroxy substituents in therapeutics. These can generally be explained by reasonable conjectures involving steric clashes and internal hydrogen bonds. Author also provide data for 25 other quinones, 2 double quinones and 15 non-quinones, all measured under similar conditions. In the experiment, the researchers used many compounds, for example, 2,3-Dimethoxy-5-methylcyclohexa-2,5-diene-1,4-dione (cas: 605-94-7HPLC of Formula: 605-94-7).

2,3-Dimethoxy-5-methylcyclohexa-2,5-diene-1,4-dione (cas: 605-94-7) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. But on the other hand, ethers undergo cleavage by reaction with acids. Ethers can form hydrogen bonds with other molecules (alcohols, amines, etc.) that have O―H or N―H bonds. The ability to form hydrogen bonds with other compounds makes ethers particularly good solvents for a wide variety of organic compounds and a surprisingly large number of inorganic compounds.HPLC of Formula: 605-94-7

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Gao, Tianye et al. published their research in Polyhedron in 2022 | CAS: 105-13-5

(4-Methoxyphenyl)methanol (cas: 105-13-5) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil. Ethers feature bent C–O–C linkages. In dimethyl ether, the bond angle is 111° and C–O distances are 141 pm. The barrier to rotation about the C–O bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.Electric Literature of C8H10O2

Copper(II) complexes supported by 8-hydroxyquinoline-imine ligands: Synthesis, characterization and catalysis in aerobic alcohols oxidation was written by Gao, Tianye;Meng, Lizhen;Zeng, Guang;Hao, Zhiqiang;Han, Zhangang;Feng, Qi;Lin, Jin. And the article was included in Polyhedron in 2022.Electric Literature of C8H10O2 This article mentions the following:

Treatment of Cu(OAc)2·4H2O with 8-hydroxylquinoline-imine ligands [2-(ArN = Hc)-8-OH]C9H5N (Ar = 2,6-iPr2C6H3, L1H; Ar = 4-ClC6H4, L2H; Ar = 4-BrC6H4, L3H and Ar = 4-OMeC6H4, L4H) in refluxing EtOH gave the dual-ligand coordinated copper complexes [L2Cu] (1a1d) in good yields, resp. All the four Cu complexes were characterized by IR, EPR, elemental anal. and HR-MS. Furthermore, the mol. structures of 1a and 1d were further confirmed by x-ray crystallog. anal. These complexes displayed high catalytic activity and good selectivity for aerobic oxidation of primary and secondary alcs. in the presence of TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxyl) as the co-catalyst. The yields of desired aldehydes are decent (up to 84%) and the corresponding yields of ketones are at 78-91%. In the experiment, the researchers used many compounds, for example, (4-Methoxyphenyl)methanol (cas: 105-13-5Electric Literature of C8H10O2).

(4-Methoxyphenyl)methanol (cas: 105-13-5) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil. Ethers feature bent C–O–C linkages. In dimethyl ether, the bond angle is 111° and C–O distances are 141 pm. The barrier to rotation about the C–O bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.Electric Literature of C8H10O2

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Perlin, Pesach et al. published their research in Biomacromolecules in 2020 | CAS: 111-77-3

2-(2-Methoxyethoxy)ethanol (cas: 111-77-3) belongs to ethers. The oxygen atom in ethers are more electronegative than carbon, thus the hydrogens which are alpha to the ethers are more acidic than the simple hydrocarbons. Autoxidation is the spontaneous oxidation of a compound in air. In the presence of oxygen, ethers slowly autoxidize to form hydroperoxides and dialkyl peroxides. If concentrated or heated, these peroxides may explode. To prevent such explosions, ethers should be obtained in small quantities, kept in tightly sealed containers, and used promptly.HPLC of Formula: 111-77-3

Modification of Poly(5,6-epoxy-L-norleucine) Gives Functional Polypeptides with Alternative Side-Chain Linkages was written by Perlin, Pesach;Scott, Wendell A.;Deming, Timothy J.. And the article was included in Biomacromolecules in 2020.HPLC of Formula: 111-77-3 This article mentions the following:

The preparation and characterization of a new epoxide containing polypeptide, poly(5,6-epoxy-L-norleucine), via postpolymn. modification of poly(L-homoallylglycine) is described. Addition of thiols to the epoxide groups in poly(5,6-epoxy-L-norleucine) was studied as a means to prepare side-chain functional polypeptides. The solution properties of the derivatized polypeptides were studied in water and compared to similar thioether containing functional polypeptides prepared via different routes. Subtle differences in side-chain linkage chem. were found to influence polypeptide solubility, chain conformation in solution, and thermoresponsive behavior. Poly(5,6-epoxy-L-norleucine) was found to be useful as a readily prepared intermediate that can be reacted with thiols to give a variety of functional polypeptides. In the experiment, the researchers used many compounds, for example, 2-(2-Methoxyethoxy)ethanol (cas: 111-77-3HPLC of Formula: 111-77-3).

2-(2-Methoxyethoxy)ethanol (cas: 111-77-3) belongs to ethers. The oxygen atom in ethers are more electronegative than carbon, thus the hydrogens which are alpha to the ethers are more acidic than the simple hydrocarbons. Autoxidation is the spontaneous oxidation of a compound in air. In the presence of oxygen, ethers slowly autoxidize to form hydroperoxides and dialkyl peroxides. If concentrated or heated, these peroxides may explode. To prevent such explosions, ethers should be obtained in small quantities, kept in tightly sealed containers, and used promptly.HPLC of Formula: 111-77-3

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem