Wender, Paul A. et al. published their research in Nature Chemistry in 2014 | CAS: 16356-02-8

1,4-Dimethoxy-2-butyne (cas: 16356-02-8) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. But ether is more polar than alkenes. At room temperature, ethers are pleasant-smelling colourless liquids. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil.Safety of 1,4-Dimethoxy-2-butyne

Structural complexity through multicomponent cycloaddition cascades enabled by dual-purpose, reactivity regenerating 1,2,3-triene equivalents was written by Wender, Paul A.;Fournogerakis, Dennis N.;Jeffreys, Matthew S.;Quiroz, Ryan V.;Inagaki, Fuyuhiko;Pfaffenbach, Magnus. And the article was included in Nature Chemistry in 2014.Safety of 1,4-Dimethoxy-2-butyne This article mentions the following:

Multicomponent reactions allow for more bond-forming events per synthetic operation, enabling more step- and time-economical conversion of simple starting materials to complex and thus value-added targets. These processes invariably require that reactivity be relayed from intermediate to intermediate over several mechanistic steps until a termination event produces the final product. Here, the authors report a multicomponent process in which a novel 1,2,3-butatriene equivalent (TMSBO: TMSCH2C CCH2OH) engages chemospecifically as a two-carbon alkyne component in a metal-catalyzed [5 + 2] cycloaddition with a vinylcyclopropane to produce an intermediate cycloadduct. Under the reaction conditions, this intermediate undergoes a remarkably rapid 1,4-Peterson elimination, producing a reactive four-carbon diene intermediate that is readily intercepted in either a metal-catalyzed or thermal [4 + 2] cycloaddition TMSBO thus serves as an yne-to-diene transmissive reagent coupling two powerful and convergent cycloadditions-the homologous Diels-Alder and Diels-Alder cycloadditions-through a vinylogous Peterson elimination, and enabling flexible access to diverse polycycles. In the experiment, the researchers used many compounds, for example, 1,4-Dimethoxy-2-butyne (cas: 16356-02-8Safety of 1,4-Dimethoxy-2-butyne).

1,4-Dimethoxy-2-butyne (cas: 16356-02-8) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. But ether is more polar than alkenes. At room temperature, ethers are pleasant-smelling colourless liquids. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil.Safety of 1,4-Dimethoxy-2-butyne

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Fujihira, Yamato et al. published their research in Journal of Organic Chemistry in 2021 | CAS: 112-49-2

2,5,8,11-Tetraoxadodecane (cas: 112-49-2) belongs to ethers. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides. At room temperature, ethers are pleasant-smelling colourless liquids. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil.Product Details of 112-49-2

Pentafluoroethylation of Carbonyl Compounds by HFC-125 via the Encapsulation of the K Cation with Glymes was written by Fujihira, Yamato;Hirano, Kazuki;Ono, Makoto;Mimura, Hideyuki;Kagawa, Takumi;Sedgwick, Daniel M.;Fustero, Santos;Shibata, Norio. And the article was included in Journal of Organic Chemistry in 2021.Product Details of 112-49-2 This article mentions the following:

A simple protocol to overcome the explosive pentafluoroethylation of carbonyl compounds by HFC-125 is described. The use of potassium (K) bases with triglyme or tetraglyme as a solvent safely yields the pentafluoroethylation products in good to high yields. The exptl. results suggest that an encapsulation of the K cation by glymes as K(glyme)2 inhibits the contact between the K cation and the reactive anionic pentafluoroethyl counterion, preventing their transformation into KF and explosive tetrafluoroethylene (TFE). The generation of sterically demanding [K(G3)2]+ and [K(G4)2]+ is an effective way as an unstable pentafluoroethyl anion reservoir. In the experiment, the researchers used many compounds, for example, 2,5,8,11-Tetraoxadodecane (cas: 112-49-2Product Details of 112-49-2).

2,5,8,11-Tetraoxadodecane (cas: 112-49-2) belongs to ethers. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides. At room temperature, ethers are pleasant-smelling colourless liquids. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil.Product Details of 112-49-2

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Oh, Young-Ho et al. published their research in Molecules in 2021 | CAS: 3929-47-3

3-(3,4-Dimethoxyphenyl)propan-1-ol (cas: 3929-47-3) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. But ether is more polar than alkenes. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides.Reference of 3929-47-3

Inter- and intra-molecular organocatalysis of SN2 fluorination by crown ether: kinetics and quantum chemical analysis was written by Oh, Young-Ho;Yun, Wonhyuck;Kim, Chul-Hee;Jang, Sung-Woo;Lee, Sung-Sik;Lee, Sungyul;Kim, Dong-Wook. And the article was included in Molecules in 2021.Reference of 3929-47-3 This article mentions the following:

We present the intra- and inter-mol. organocatalysis of SN2 fluorination using CsF by crown ether to estimate the efficacy of the promoter and to elucidate the reaction mechanism. The yields of intramol. SN2 fluorination of the veratrole substrates are measured to be very small (<1% in 12 h) in the absence of crown ether promoters, whereas the SN2 fluorination of the substrate possessing a crown ether unit proceeds to near completion (~99%) in 12 h. We also studied the efficacy of intermol. rate acceleration by an independent promoter 18-crown-6 for comparison. We find that the fluorinating yield of a veratrole substrate (leaving group = -OMs) in the presence of 18-crown-6 follows the almost identical kinetic course as that of intramol. SN2 fluorination, indicating the mechanistic similarity of intra- and inter-mol. organocatalysis of the crown ether for SN2 fluorination. The calculated relative Gibbs free energies of activation for these reactions, in which the crown ether units act as Lewis base promoters for SN2 fluorination, are in excellent agreement with the exptl. measured yields of fluorination. The role of the metal salt CsF is briefly discussed in terms of whether it reacts as a contact ion pair or as a “free” nucleophile F. In the experiment, the researchers used many compounds, for example, 3-(3,4-Dimethoxyphenyl)propan-1-ol (cas: 3929-47-3Reference of 3929-47-3).

3-(3,4-Dimethoxyphenyl)propan-1-ol (cas: 3929-47-3) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. But ether is more polar than alkenes. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides.Reference of 3929-47-3

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Zhou, Yan et al. published their research in Molecules in 2021 | CAS: 57179-35-8

3-Hydroxy-5-methoxybenzaldehyde (cas: 57179-35-8) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive. Electron-deficient reagents are also stabilized by ethers. For example, borane (BH3) is a useful reagent for making alcohols. Pure borane exists as its dimer, diborane (B2H6), a toxic gas that is inconvenient and hazardous to use. Borane forms stable complexes with ethers, however, and it is often supplied and used as its liquid complex with tetrahydrofuran (THF).Reference of 57179-35-8

Design, synthesis, and evaluation of dihydropyranopyrazole derivatives as novel PDE2 inhibitors for the treatment of Alzheimer’s disease was written by Zhou, Yan;Li, Jinjian;Yuan, Han;Su, Rui;Huang, Yue;Huang, Yiyou;Li, Zhe;Wu, Yinuo;Luo, Haibin;Zhang, Chen;Huang, Ling. And the article was included in Molecules in 2021.Reference of 57179-35-8 This article mentions the following:

In this study, (R)-LZ77 was obtained as a hit compound with moderate PDE2 inhibitory activity (IC50 = 261.3 nM) using a high-throughput virtual screening method based on mol. dynamics. Then, 28 dihydropyranopyrazole derivatives I [R1 = H, CH3O, Cl; R2 = H, CH3, CH3O, etc.; R3 = H, CH3, C6H5; R4 = H, CH3O, Cl, etc; R5 = NH2, (CH3)2N; n = 1, 2, 3] and II [R6 = Cl, CF3; n = 0, 2, 3] were designed and synthesized as PDE2 inhibitors. Among them, compound (+)-I [R1 = H; R2 = CH3O; R3 = CH3; R4 = CF3; R5 = NH2; n = 1] was the most potent PDE2 inhibitor, with an IC50 value of 41.5 nM. The mol. docking of PDE2-(+)-I [R1 = H; R2 = CH3O; R3 = CH3; R4 = CF3; R5 = NH2; n = 1] revealed that the 4-(trifluoromethyl)benzyloxyl side chain of the compound enters the H-pocket and forms strong hydrophobic interactions with L770/L809/F862, which improves inhibitory activity. The above results may provide insight for further structural optimization of highly potent PDE2 inhibitors and may lay the foundation for their use in the treatment of AD. In the experiment, the researchers used many compounds, for example, 3-Hydroxy-5-methoxybenzaldehyde (cas: 57179-35-8Reference of 57179-35-8).

3-Hydroxy-5-methoxybenzaldehyde (cas: 57179-35-8) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive. Electron-deficient reagents are also stabilized by ethers. For example, borane (BH3) is a useful reagent for making alcohols. Pure borane exists as its dimer, diborane (B2H6), a toxic gas that is inconvenient and hazardous to use. Borane forms stable complexes with ethers, however, and it is often supplied and used as its liquid complex with tetrahydrofuran (THF).Reference of 57179-35-8

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Hao, Mingming et al. published their research in Applied Catalysis, B: Environmental in 2022 | CAS: 105-13-5

(4-Methoxyphenyl)methanol (cas: 105-13-5) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides.Formula: C8H10O2

Efficient visible light initiated one-pot syntheses of secondary amines from nitro aromatics and benzyl alcohols over Pd@NH2-UiO-66(Zr) was written by Hao, Mingming;Li, Zhaohui. And the article was included in Applied Catalysis, B: Environmental in 2022.Formula: C8H10O2 This article mentions the following:

Pd@NH2-UiO-66(Zr), with small-sized Pd nanoparticles encapsulated inside the cavities of NH2-UiO-66(Zr), was obtained via a double-solvent impregnation followed by a photoreduction process, which shows superior activity for the visible light initiated syntheses of secondary amines from nitro compounds and alcs., via a sequential photocatalytic hydrogenation of nitro compounds/dehydrogenation of alcs., condensation of amines and aldehydes to imines, and the hydrogenation of imines. Simultaneous consumption of photogenerated electrons/holes in the photocatalytic hydrogenation of nitro compounds to amines and dehydrogenation of alcs. to aldehydes promotes the whole reaction. Due to the confinement effect of the cavity and the small-sized Pd nanoparticles, Pd@NH2-UiO-66(Zr) shows significantly superior performance as compared with Pd/NH2-UiO-66(Zr), in which larger Pd nanoparticles are deposited on the surface. This study provides an efficient and green strategy for the production of secondary amines and highlights the great potential of using M/MOFs nanocomposites as multifunctional catalysts for light induced one-pot tandem reactions. In the experiment, the researchers used many compounds, for example, (4-Methoxyphenyl)methanol (cas: 105-13-5Formula: C8H10O2).

(4-Methoxyphenyl)methanol (cas: 105-13-5) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides.Formula: C8H10O2

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Yang, Shang-Han et al. published their research in Biochemical Engineering Journal in 2017 | CAS: 605-94-7

2,3-Dimethoxy-5-methylcyclohexa-2,5-diene-1,4-dione (cas: 605-94-7) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil. Ethyl ether is an excellent solvent for extractions and for a wide variety of chemical reactions. It is also used as a volatile starting fluid for diesel engines and gasoline engines in cold weather. Dimethyl ether is used as a spray propellant and refrigerant. Methyl t-butyl ether (MTBE) is a gasoline additive that boosts the octane number and reduces the amount of nitrogen-oxide pollutants in the exhaust. The ethers of ethylene glycol are used as solvents and plasticizers.Formula: C9H10O4

Biosynthesis of 4-acetylantroquinonol B in Antrodia cinnamomea via a pathway related to coenzyme Q synthesis was written by Yang, Shang-Han;Lin, Yu-Wei;Chiang, Been-Huang. And the article was included in Biochemical Engineering Journal in 2017.Formula: C9H10O4 This article mentions the following:

The biosynthesis pathway for production of 4-acetylantroquinonol B (4-AAQB) by Antrodia cinnamomea was investigated by adding various precursors to the culture medium. Adding 4-hydroxybenzoic acid (4-HBA) significantly increased the production of 4-AAQB. Since 4-HBA is an intermediate of the shikimate pathway and 4-AAQB and coenzyme Q (CoQ) are similar in structure, we suspected that the pathway for producing 4-AAQB was closely related to the biosynthesis of CoQ. Since the isoprenoid chain of CoQ is synthesized via the mevalonate pathway, we added oleic acid to the culture medium and confirmed that the addition significantly increased the production of 4-AAQB. Furthermore, adding coenzyme Q0 into the fermentation broth was found to be the most effective way to increase the production of 4-AAQB. We suspect that coenzyme Q0 forms CoQ, after which CoQ is converted to 4-AAQB via unknown steps. The increase in 4-AAQB production due to the addition of CoQ10 further demonstrated that the biosynthesis pathway of 4-AAQB from A. cinnamomea is closely related to CoQ. In the experiment, the researchers used many compounds, for example, 2,3-Dimethoxy-5-methylcyclohexa-2,5-diene-1,4-dione (cas: 605-94-7Formula: C9H10O4).

2,3-Dimethoxy-5-methylcyclohexa-2,5-diene-1,4-dione (cas: 605-94-7) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil. Ethyl ether is an excellent solvent for extractions and for a wide variety of chemical reactions. It is also used as a volatile starting fluid for diesel engines and gasoline engines in cold weather. Dimethyl ether is used as a spray propellant and refrigerant. Methyl t-butyl ether (MTBE) is a gasoline additive that boosts the octane number and reduces the amount of nitrogen-oxide pollutants in the exhaust. The ethers of ethylene glycol are used as solvents and plasticizers.Formula: C9H10O4

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Dong, Ban Xuan et al. published their research in Chemistry of Materials in 2021 | CAS: 111-77-3

2-(2-Methoxyethoxy)ethanol (cas: 111-77-3) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides.HPLC of Formula: 111-77-3

Complex Relationship between Side-Chain Polarity, Conductivity, and Thermal Stability in Molecularly Doped Conjugated Polymers was written by Dong, Ban Xuan;Nowak, Christian;Onorato, Jonathan W.;Ma, Tengzhou;Niklas, Jens;Poluektov, Oleg G.;Grocke, Garrett;DiTusa, Mark F.;Escobedo, Fernando A.;Luscombe, Christine K.;Nealey, Paul F.;Patel, Shrayesh N.. And the article was included in Chemistry of Materials in 2021.HPLC of Formula: 111-77-3 This article mentions the following:

Molecularly doped conjugated polymers with polar side chains are an emerging class of conducting materials exhibiting enhanced and thermally stable conductivity Here, we study the electronic conductivity (σ) and the corresponding thermal stability of two polythiophene derivatives comprising oligoethylene glycol side chains: one having oxygen attached to the thiophene ring (poly(3-(methoxyethoxyethoxy)thiophene) (P3MEET)) and the other having a methylene spacer between the oxygen and the thiophene ring (poly(3-(methoxyethoxyethoxymethyl)thiophene) (P3MEEMT)). Thin films were vapor-doped with fluorinated derivatives of tetracyanoquinodimethane (FnTCNQ, n = 4, 2, 1) to determine the role of dopant strength (electron affinity) in maximum achievable σ. Specifically, when vapor doping with F4TCNQ, P3MEET achieved a substantially higher σ of 37.1 ± 10.1 S/cm compared to a σ of 0.82 ± 0.06 S/cm for P3MEEMT. Structural characterization using a combination of X-ray and optical spectroscopy reveals that the higher degree of conformational order of polymer chains in the amorphous domain upon doping with F4TCNQ in P3MEET is a major contributing factor for the higher σ of P3MEET. Addnl., vapor-doped P3MEET exhibited superior thermal stability compared to P3MEEMT, highlighting that the presence of polar side chains alone does not ensure higher thermal stability. Mol. dynamics simulations indicate that the dopant-side-chain nonbond energy is lower in the P3MEET:F4TCNQ mixture, suggesting more favorable dopant-side-chain interaction, which is a factor in improving the thermal stability of a polymer/dopant pair. Our results reveal that addnl. factors such as polymer ionization energy and side-chain-dopant interaction should be taken into account for the design of thermally stable, highly conductive polymers. In the experiment, the researchers used many compounds, for example, 2-(2-Methoxyethoxy)ethanol (cas: 111-77-3HPLC of Formula: 111-77-3).

2-(2-Methoxyethoxy)ethanol (cas: 111-77-3) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides.HPLC of Formula: 111-77-3

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Kamisaka, Seiichiro et al. published their research in Plant and Cell Physiology in 1977 | CAS: 3929-47-3

3-(3,4-Dimethoxyphenyl)propan-1-ol (cas: 3929-47-3) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. At room temperature, ethers are pleasant-smelling colourless liquids. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil.Recommanded Product: 3-(3,4-Dimethoxyphenyl)propan-1-ol

Anticotyledon factor: Competitive inhibitors of the action of dihydroconiferyl alcohol in stimulating gibberellic acid-induced lettuce hypocotyl elongation was written by Kamisaka, Seiichiro;Shibata, Kozo. And the article was included in Plant and Cell Physiology in 1977.Recommanded Product: 3-(3,4-Dimethoxyphenyl)propan-1-ol This article mentions the following:

The lettuce cotyledon factor, dihydroconiferyl alc., synergistically enhanced the stimulating effect of gibberellic acid (GA3) on hypocotyl elongation of decotylized lettuce seedlings. The action of dihydroconiferyl alc. was inhibited by 3-(3,4-dimethoxyphenyl)propanol, 3-(3-hydroxy-4-methoxyphenyl)propionic acid, methyl p-methoxycinnamate, trans-cinnamic acid, p-coumaric acid, ferulic acid, caffeic acid, and synapic acid. Kinetic studies with Lineweaver-Burk plots indicated that these compounds were competitive inhibitors of dihydroconiferyl alc. These inhibitors were termed anticotyledon factors. The action of dihydroconiferyl alc. was not influenced by phenylalanine, tyrosine, p-coumaryl alc., and coniferyl alc. In the experiment, the researchers used many compounds, for example, 3-(3,4-Dimethoxyphenyl)propan-1-ol (cas: 3929-47-3Recommanded Product: 3-(3,4-Dimethoxyphenyl)propan-1-ol).

3-(3,4-Dimethoxyphenyl)propan-1-ol (cas: 3929-47-3) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. At room temperature, ethers are pleasant-smelling colourless liquids. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil.Recommanded Product: 3-(3,4-Dimethoxyphenyl)propan-1-ol

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Nojabaee, Maryam et al. published their research in Small in 2020 | CAS: 112-49-2

2,5,8,11-Tetraoxadodecane (cas: 112-49-2) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive. Autoxidation is the spontaneous oxidation of a compound in air. In the presence of oxygen, ethers slowly autoxidize to form hydroperoxides and dialkyl peroxides. If concentrated or heated, these peroxides may explode. To prevent such explosions, ethers should be obtained in small quantities, kept in tightly sealed containers, and used promptly.Recommanded Product: 112-49-2

Solid Electrolyte Interphase Evolution on Lithium Metal in Contact with Glyme-Based Electrolytes was written by Nojabaee, Maryam;Kuester, Kathrin;Starke, Ulrich;Popovic, Jelena;Maier, Joachim. And the article was included in Small in 2020.Recommanded Product: 112-49-2 This article mentions the following:

The formation of a stable solid electrolyte interphase (SEI) is a prerogative for functional lithium metal batteries. Herein, the formation and evolution of such SEI in contact with glyme-based electrolytes is investigated under open circuit voltage and several constant current cycles. An important conclusion of the study is that LixSy species are nonbeneficial SEI components, compared to the Li3N counterpart. In addition, chem. (XPS, XPS) and electrochem. (impedance spectroscopy) evolution of SEI under galvanostatic conditions are comprehensively tracked. In the experiment, the researchers used many compounds, for example, 2,5,8,11-Tetraoxadodecane (cas: 112-49-2Recommanded Product: 112-49-2).

2,5,8,11-Tetraoxadodecane (cas: 112-49-2) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive. Autoxidation is the spontaneous oxidation of a compound in air. In the presence of oxygen, ethers slowly autoxidize to form hydroperoxides and dialkyl peroxides. If concentrated or heated, these peroxides may explode. To prevent such explosions, ethers should be obtained in small quantities, kept in tightly sealed containers, and used promptly.Recommanded Product: 112-49-2

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Sarges, Reinhard et al. published their research in Journal of Medicinal Chemistry in 1996 | CAS: 1877-75-4

2-(4-Methoxyphenoxy)acetic acid (cas: 1877-75-4) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive. At room temperature, ethers are pleasant-smelling colourless liquids. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil.SDS of cas: 1877-75-4

Glucose transport-enhancing and hypoglycemic activity of 2-methyl-2-phenoxy-3-phenylpropanoic acids was written by Sarges, Reinhard;Hank, Richard F.;Blake, James F.;Bordner, Jon;Bussolotti, Donald L.;Hargrove, Diane M.;Treadway, Judith L.;Gibbs, E. Michael. And the article was included in Journal of Medicinal Chemistry in 1996.SDS of cas: 1877-75-4 This article mentions the following:

A series of 2-phenoxy-3-phenylpropanoic acids has been prepared which contains many potent hypoglycemic agents as demonstrated by assessing glucose lowering in ob/ob mice. Some compounds normalize plasma glucose in this diabetic model at doses of approx. 1 mg/kg. The mechanism of action of these drugs may involve enhanced glucose transport, especially in fat cells, but the compounds do not stimulate GLUT4 translocation and do not increase the levels of GLUT1 or GLUT4 in vivo. Thus, these compounds may enhance the intrinsic activity of the glucose transporter GLUT1 or GLUT4. Some compounds also modestly decrease hepatocyte gluconeogenesis in vitro, but this is not likely to be a major contributor to the hypoglycemic effect observed in vivo. Likewise, a modest decrease in food consumption observed with some of these compounds was shown by a pair-feeding experiment not to be the primary cause of the hypoglycemia observed In the experiment, the researchers used many compounds, for example, 2-(4-Methoxyphenoxy)acetic acid (cas: 1877-75-4SDS of cas: 1877-75-4).

2-(4-Methoxyphenoxy)acetic acid (cas: 1877-75-4) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive. At room temperature, ethers are pleasant-smelling colourless liquids. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil.SDS of cas: 1877-75-4

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem