Minus, Matthew B. team published research in Organic Letters in 2021 | 122775-35-3

Computed Properties of 122775-35-3, 3,4-Dimethoxyphenylboronic acid is a useful research compound. Its molecular formula is C8H11BO4 and its molecular weight is 181.98 g/mol. The purity is usually 95%.
3,4-Dimethoxyphenylboronic acid contains varying amounts of anhydride.
3,4-Dimethoxyphenylboronic acid is a bacterial mutagen. A useful intermediate for organic synthesis.
3,4-Dimethoxyphenylboronic acid is a boronate ester that has been shown to be an effective coupling partner for the Suzuki reaction. It has also been used in cancer therapy and as a photochemical probe for the study of biological properties. 3,4-Dimethoxyphenylboronic acid has been shown to demethylate DNA and inhibit methionine aminopeptidase activity. It also cross-couples with halides, such as chlorides or iodides, and activates tertiary alcohols. 3,4-Dimethoxyphenylboronic acid is soluble in organic solvents and can be used in supramolecular chemistry., 122775-35-3.

Ethers do have nonbonding electron pairs on their oxygen atoms, 122775-35-3, formula is C8H11BO4, Name is 3,4-Dimethoxyphenylboronic acid. The ability to form hydrogen bonds with other compounds makes ethers particularly good solvents for a wide variety of organic compounds and a surprisingly large number of inorganic compounds. Computed Properties of 122775-35-3.

Minus, Matthew B.;Moor, Sarah R.;Pary, Fathima F.;Nirmani, L. P. T.;Chwatko, Malgorzata;Okeke, Brandon;Singleton, Josh E.;Nelson, Toby L.;Lynd, Nathaniel A.;Anslyn, Eric V. research published 《 “Benchtop” Biaryl Coupling Using Pd/Cu Cocatalysis: Application to the Synthesis of Conjugated Polymers》, the research content is summarized as follows. Typically, Suzuki couplings used in polymerizations are performed at raised temperatures in inert atmospheres. As a result, the synthesis of aromatic materials that utilize this chem. often demands expensive and specialized equipment on an industrial scale. Herein, we describe a bimetallic methodol. that exploits the distinct reactivities of palladium and copper to perform high yielding aryl-aryl dimerizations and polymerizations that can be performed on a benchtop under ambient conditions. These couplings are facile and can be performed by simple mixing in the open vessel. To demonstrate the utility of this method in the context of polymer synthesis: polyfluorene, polycarbazole, polysilafluorene, and poly(6,12-dihydro-dithienoindacenodithiophene) were created at ambient temperature and open to air.

Computed Properties of 122775-35-3, 3,4-Dimethoxyphenylboronic acid is a useful research compound. Its molecular formula is C8H11BO4 and its molecular weight is 181.98 g/mol. The purity is usually 95%.
3,4-Dimethoxyphenylboronic acid contains varying amounts of anhydride.
3,4-Dimethoxyphenylboronic acid is a bacterial mutagen. A useful intermediate for organic synthesis.
3,4-Dimethoxyphenylboronic acid is a boronate ester that has been shown to be an effective coupling partner for the Suzuki reaction. It has also been used in cancer therapy and as a photochemical probe for the study of biological properties. 3,4-Dimethoxyphenylboronic acid has been shown to demethylate DNA and inhibit methionine aminopeptidase activity. It also cross-couples with halides, such as chlorides or iodides, and activates tertiary alcohols. 3,4-Dimethoxyphenylboronic acid is soluble in organic solvents and can be used in supramolecular chemistry., 122775-35-3.

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Miller, Melissa team published research in Journal of Biological Chemistry in 2011 | 38256-93-8

SDS of cas: 38256-93-8, 2-Methoxy-N-methylethanamine is a useful research compound. Its molecular formula is C4H11NO and its molecular weight is 89.14 g/mol. The purity is usually 95%.
2-Methoxy-N-methylethanamine is a drug that binds to the cannabinoid receptor CB1. It has been shown to be effective in the treatment of cardiac arrhythmia and may also be used as an anti-inflammatory drug. 2MEMEA has been shown to have pharmacokinetic properties that are different from those of other amines, which may be due to its ability to form hydrogen bonds with water molecules. 2MEMEA also has diversified effects on some types of cancer cells, including hyperproliferative and amine-dependent cancers., 38256-93-8.

Ethers feature bent C–O–C linkages. In dimethyl ether, the bond angle is 111° and C–O distances are 141 pm. 38256-93-8, formula is C4H11NO, Name is 2-Methoxy-N-methylethanamine. The barrier to rotation about the C–O bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3. SDS of cas: 38256-93-8.

Miller, Melissa;Shi, Jie;Zhu, Ying-Min;ustov, Maksym;Tian, Jin-Bin;Stevens, Amy;Wu, Meng;Xu, Jia;Long, Shun-You;Yang, Pu;Zholos, Alexander V.;Salovich, James M.;Weaver, C. David;Hopkins, Corey R.;Lindsley, Craig W.;McManus, Owen;Li, Min;Zhu, Michael X. research published 《 Identification of ML204, a Novel Potent Antagonist That Selectively Modulates Native TRPC4/C5 Ion Channels》, the research content is summarized as follows. Transient receptor potential canonical (TRPC) channels are Ca2+-permeable nonselective cation channels implicated in diverse physiol. functions, including smooth muscle contractility and synaptic transmission. However, lack of potent selective pharmacol. inhibitors for TRPC channels has limited delineation of the roles of these channels in physiol. systems. Here we report the identification and characterization of ML204 (I)as a novel, potent, and selective TRPC4 channel inhibitor. A high throughput fluorescent screen of 305,000 compounds of the Mol. Libraries Small Mol. Repository was performed for inhibitors that blocked intracellular Ca2+ rise in response to stimulation of mouse TRPC4β by μ-opioid receptors. ML204 inhibited TRPC4β-mediated intracellular Ca2+ rise with an IC50 value of 0.96 μM and exhibited 19-fold selectivity against muscarinic receptor-coupled TRPC6 channel activation. In whole-cell patch clamp recordings, ML204 blocked TRPC4β currents activated through either μ-opioid receptor stimulation or intracellular dialysis of guanosine 5′-3-O-(thio)triphosphate (GTPγS), suggesting a direct interaction of ML204 with TRPC4 channels rather than any interference with the signal transduction pathways. Selectivity studies showed no appreciable block by 10-20 μM ML204 of TRPV1, TRPV3, TRPA1, and TRPM8, as well as KCNQ2 and native voltage-gated sodium, potassium, and calcium channels in mouse dorsal root ganglion neurons. In isolated guinea pig ileal myocytes, ML204 blocked muscarinic cation currents activated by bath application of carbachol or intracellular infusion of GTPγS, demonstrating its effectiveness on native TRPC4 currents. Therefore, ML204 represents an excellent novel tool for investigation of TRPC4 channel function and may facilitate the development of therapeutics targeted to TRPC4.

SDS of cas: 38256-93-8, 2-Methoxy-N-methylethanamine is a useful research compound. Its molecular formula is C4H11NO and its molecular weight is 89.14 g/mol. The purity is usually 95%.
2-Methoxy-N-methylethanamine is a drug that binds to the cannabinoid receptor CB1. It has been shown to be effective in the treatment of cardiac arrhythmia and may also be used as an anti-inflammatory drug. 2MEMEA has been shown to have pharmacokinetic properties that are different from those of other amines, which may be due to its ability to form hydrogen bonds with water molecules. 2MEMEA also has diversified effects on some types of cancer cells, including hyperproliferative and amine-dependent cancers., 38256-93-8.

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Mezni, Faten team published research in South African Journal of Botany in 2022 | 530-59-6

Formula: C11H12O5, Sinapinic acid is a chemical compound that is the dihydroxybenzoic acid derivative of sinapic acid. It has been shown to have anti-inflammatory properties in vitro and in vivo. Sinapinic acid inhibits the activity of various enzymes, such as cyclooxygenase (COX), lipoxygenase (LOX), and 5-lipoxygenase-activating protein (FLAP). It also decreases levels of adhesion molecules and downregulates inflammatory response genes. Sinapinic acid has been shown to reduce inflammation by inhibiting the formation of proinflammatory mediators, such as prostaglandin E2 or leukotriene B4, in endothelial cells and mammary epithelial cells.
Sinapic acid is a phenylpropanoid hydroxycinnamic acid with diverse biological activities. Sinapic acid inhibits collagen-induced human platelet aggregation by up to 70% in vitro (IC50 = 1.03 mM). It scavenges 2,2-diphenyl-1-picrylhydrazyl (DPPH; ) and 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS) free radicals with IC50 values of 8.3 and 5.4 μg/ml, respectively. Sinapic acid (200 μM) reduces colony formation of SW480 human colon carcinoma cells by 4-fold. It also inhibits colony formation of E. coli, S. enteritidis, and S. aureus on agar (MICs = 2.2, 2, and 1.8 mM, respectively). In vivo, sinapic acid (4 mg/kg, p.o.) increases the time spent in the open arms of the elevated plus maze by approximately 15% in mice, an effect that can be blocked by the GABAA receptor antagonists flumazenil and bicuculline. Sinapic acid is also commonly used as a matrix in protein mass spectrometry.
Sinapic acid analytical standard provided with w/w absolute assay, to be used for quantitative titration.
Sinapic acid is an hydroxycinnamic acid derivative that occurs naturally in Brassicaceae species.
cis-Sinapic acid, also known as cis-sinapate or synapitic acid, belongs to the class of organic compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated. cis-Sinapic acid is considered to be a practically insoluble (in water) and relatively neutral molecule. Within the cell, cis-sinapic acid is primarily located in the cytoplasm. Outside of the human body, cis-sinapic acid can be found in common pea and pulses. This makes cis-sinapic acid a potential biomarker for the consumption of these food products.
Cis-sinapic acid is a 3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoic acid in which the double bond has cis-configuration. It has been isolated from the shoots of alfalfa. It has a role as a plant metabolite., 530-59-6.

Ethers do have nonbonding electron pairs on their oxygen atoms, 530-59-6, formula is C11H12O5, Name is 3,5-Dimethoxy-4-hydroxycinnamic acid. The ability to form hydrogen bonds with other compounds makes ethers particularly good solvents for a wide variety of organic compounds and a surprisingly large number of inorganic compounds. Formula: C11H12O5.

Mezni, Faten;Stiti, Boutheina;Fkiri, Sondes;Ayari, Faten;Slimane, Lassaad Ben;Ksouri, Riadh;Khaldi, Abdelhamid research published 《 Phenolic profile and in vitro anti-diabetic activity of acorn from four African Quercus species (Q. suber, Q. canariensis, Q. coccifera and Q. ilex)》, the research content is summarized as follows. In this investigation we studied the phenolic profile of acorn extracts from four Quercus species. We evaluated whether the phenolic compounds could inhibit the metabolism of carbohydrates. Four different Quercus species were studied; Q. suber, Q. canariensis, Q. coccifera and Q. ilex. The total phenolic content was determined using Folin-Ciocalteu′s reagent and its identification was conducted using HPLC-UVDAD. The α-amylase inhibition assay was performed using the sensitive agar diffusion method. Q. suber and Q. canariensis were characterized by the highest phenolic content (2950.98 mg EGA/g and 4380.69 mg EGA/g, resp.). Chlorogenic acid was identified as the major compound in extracts from Q. ilex, Q. coccifera and Q. suber. Whereas, Coumarin was determined as the major compound in Q. canariensis extract (44.65%).The application of Q. canariensis showed ahigher effect than that of the pos. control (43.42%). This inhibition is likely due to the high polyphenol content in the acorns of this species.

Formula: C11H12O5, Sinapinic acid is a chemical compound that is the dihydroxybenzoic acid derivative of sinapic acid. It has been shown to have anti-inflammatory properties in vitro and in vivo. Sinapinic acid inhibits the activity of various enzymes, such as cyclooxygenase (COX), lipoxygenase (LOX), and 5-lipoxygenase-activating protein (FLAP). It also decreases levels of adhesion molecules and downregulates inflammatory response genes. Sinapinic acid has been shown to reduce inflammation by inhibiting the formation of proinflammatory mediators, such as prostaglandin E2 or leukotriene B4, in endothelial cells and mammary epithelial cells.
Sinapic acid is a phenylpropanoid hydroxycinnamic acid with diverse biological activities. Sinapic acid inhibits collagen-induced human platelet aggregation by up to 70% in vitro (IC50 = 1.03 mM). It scavenges 2,2-diphenyl-1-picrylhydrazyl (DPPH; ) and 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS) free radicals with IC50 values of 8.3 and 5.4 μg/ml, respectively. Sinapic acid (200 μM) reduces colony formation of SW480 human colon carcinoma cells by 4-fold. It also inhibits colony formation of E. coli, S. enteritidis, and S. aureus on agar (MICs = 2.2, 2, and 1.8 mM, respectively). In vivo, sinapic acid (4 mg/kg, p.o.) increases the time spent in the open arms of the elevated plus maze by approximately 15% in mice, an effect that can be blocked by the GABAA receptor antagonists flumazenil and bicuculline. Sinapic acid is also commonly used as a matrix in protein mass spectrometry.
Sinapic acid analytical standard provided with w/w absolute assay, to be used for quantitative titration.
Sinapic acid is an hydroxycinnamic acid derivative that occurs naturally in Brassicaceae species.
cis-Sinapic acid, also known as cis-sinapate or synapitic acid, belongs to the class of organic compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated. cis-Sinapic acid is considered to be a practically insoluble (in water) and relatively neutral molecule. Within the cell, cis-sinapic acid is primarily located in the cytoplasm. Outside of the human body, cis-sinapic acid can be found in common pea and pulses. This makes cis-sinapic acid a potential biomarker for the consumption of these food products.
Cis-sinapic acid is a 3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoic acid in which the double bond has cis-configuration. It has been isolated from the shoots of alfalfa. It has a role as a plant metabolite., 530-59-6.

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Meng, Jie team published research in Food Chemistry in 2022 | 530-59-6

Product Details of C11H12O5, Sinapinic acid is a chemical compound that is the dihydroxybenzoic acid derivative of sinapic acid. It has been shown to have anti-inflammatory properties in vitro and in vivo. Sinapinic acid inhibits the activity of various enzymes, such as cyclooxygenase (COX), lipoxygenase (LOX), and 5-lipoxygenase-activating protein (FLAP). It also decreases levels of adhesion molecules and downregulates inflammatory response genes. Sinapinic acid has been shown to reduce inflammation by inhibiting the formation of proinflammatory mediators, such as prostaglandin E2 or leukotriene B4, in endothelial cells and mammary epithelial cells.
Sinapic acid is a phenylpropanoid hydroxycinnamic acid with diverse biological activities. Sinapic acid inhibits collagen-induced human platelet aggregation by up to 70% in vitro (IC50 = 1.03 mM). It scavenges 2,2-diphenyl-1-picrylhydrazyl (DPPH; ) and 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS) free radicals with IC50 values of 8.3 and 5.4 μg/ml, respectively. Sinapic acid (200 μM) reduces colony formation of SW480 human colon carcinoma cells by 4-fold. It also inhibits colony formation of E. coli, S. enteritidis, and S. aureus on agar (MICs = 2.2, 2, and 1.8 mM, respectively). In vivo, sinapic acid (4 mg/kg, p.o.) increases the time spent in the open arms of the elevated plus maze by approximately 15% in mice, an effect that can be blocked by the GABAA receptor antagonists flumazenil and bicuculline. Sinapic acid is also commonly used as a matrix in protein mass spectrometry.
Sinapic acid analytical standard provided with w/w absolute assay, to be used for quantitative titration.
Sinapic acid is an hydroxycinnamic acid derivative that occurs naturally in Brassicaceae species.
cis-Sinapic acid, also known as cis-sinapate or synapitic acid, belongs to the class of organic compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated. cis-Sinapic acid is considered to be a practically insoluble (in water) and relatively neutral molecule. Within the cell, cis-sinapic acid is primarily located in the cytoplasm. Outside of the human body, cis-sinapic acid can be found in common pea and pulses. This makes cis-sinapic acid a potential biomarker for the consumption of these food products.
Cis-sinapic acid is a 3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoic acid in which the double bond has cis-configuration. It has been isolated from the shoots of alfalfa. It has a role as a plant metabolite., 530-59-6.

Ethers lack the hydroxyl groups of alcohols. Without the strongly polarized O―H bond, ether molecules cannot engage in hydrogen bonding with each other. 530-59-6, formula is C11H12O5, Name is 3,5-Dimethoxy-4-hydroxycinnamic acid. Ethers do have nonbonding electron pairs on their oxygen atoms, however, and they can form hydrogen bonds with other molecules (alcohols, amines, etc.) that have O―H or N―H bonds. Product Details of C11H12O5.

Meng, Jie;Zhang, Yiran;Wang, Guolin;Ji, Meijing;Wang, Bo;He, Guo;Wang, Qianwen;Bai, Fali;Xu, Kun;Yuan, Dongliang;Li, Shuai;Cheng, Yue;Wei, Shuhui;Fu, Chunxiang;Wang, Guibin;Zhou, Gongke research published 《 Conduction of a chemical structure-guided metabolic phenotype analysis method targeting phenylpropane pathway via LC-MS: Ginkgo biloba and soybean as examples》, the research content is summarized as follows. The phenylpropane pathway (PPP) is one of the most extensively investigated metabolic routes. This pathway biosynthesizes many important active ingredients such as phenylpropanoids and flavonoids that affect the flavor, taste and nutrients of food. How to elucidate the metabolic phenotype of PPP is fundamental in food research and development. In this study, we designed a structural periodical table filled with 103 metabolites produced from PPP. All of them especially the 62 structural isomers were qualified and quantified with high resolution and sensitivity via multiple reaction mode in liquid chromatog. tandem triple quadrupole mass spectrometry. Ginkgo biloba and soybean were used as samples for the practical application of this method: The delicate spatial-temporal metabolic balance of PPP from ginkgo biloba has been first elucidated; It is first confirmed that the salt and draught stresses could redirect the biosynthesis trend of PPP to produce more isoflavones in soybean leaves.

Product Details of C11H12O5, Sinapinic acid is a chemical compound that is the dihydroxybenzoic acid derivative of sinapic acid. It has been shown to have anti-inflammatory properties in vitro and in vivo. Sinapinic acid inhibits the activity of various enzymes, such as cyclooxygenase (COX), lipoxygenase (LOX), and 5-lipoxygenase-activating protein (FLAP). It also decreases levels of adhesion molecules and downregulates inflammatory response genes. Sinapinic acid has been shown to reduce inflammation by inhibiting the formation of proinflammatory mediators, such as prostaglandin E2 or leukotriene B4, in endothelial cells and mammary epithelial cells.
Sinapic acid is a phenylpropanoid hydroxycinnamic acid with diverse biological activities. Sinapic acid inhibits collagen-induced human platelet aggregation by up to 70% in vitro (IC50 = 1.03 mM). It scavenges 2,2-diphenyl-1-picrylhydrazyl (DPPH; ) and 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS) free radicals with IC50 values of 8.3 and 5.4 μg/ml, respectively. Sinapic acid (200 μM) reduces colony formation of SW480 human colon carcinoma cells by 4-fold. It also inhibits colony formation of E. coli, S. enteritidis, and S. aureus on agar (MICs = 2.2, 2, and 1.8 mM, respectively). In vivo, sinapic acid (4 mg/kg, p.o.) increases the time spent in the open arms of the elevated plus maze by approximately 15% in mice, an effect that can be blocked by the GABAA receptor antagonists flumazenil and bicuculline. Sinapic acid is also commonly used as a matrix in protein mass spectrometry.
Sinapic acid analytical standard provided with w/w absolute assay, to be used for quantitative titration.
Sinapic acid is an hydroxycinnamic acid derivative that occurs naturally in Brassicaceae species.
cis-Sinapic acid, also known as cis-sinapate or synapitic acid, belongs to the class of organic compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated. cis-Sinapic acid is considered to be a practically insoluble (in water) and relatively neutral molecule. Within the cell, cis-sinapic acid is primarily located in the cytoplasm. Outside of the human body, cis-sinapic acid can be found in common pea and pulses. This makes cis-sinapic acid a potential biomarker for the consumption of these food products.
Cis-sinapic acid is a 3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoic acid in which the double bond has cis-configuration. It has been isolated from the shoots of alfalfa. It has a role as a plant metabolite., 530-59-6.

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Mendonca, Diogo A. team published research in Bioconjugate Chemistry in 2021 | 73724-45-5

73724-45-5, Fmoc-Ser-OH, also known as Fmoc-Ser-OH, is a useful research compound. Its molecular formula is C18H17NO5 and its molecular weight is 327.3 g/mol. The purity is usually 95%.
Fmoc-L-Ser-OH is a synthetic peptide that belongs to the group of glycopeptides. It is used as a model for such compounds and has been shown to have antimicrobial activity in vitro against gram-positive bacteria, especially Staphylococcus epidermidis. This compound was synthesized from 3-mercaptopropionic acid and chloride in the presence of hydroxyl groups and epidermal growth factor. The synthetic pathway can be divided into three steps: (1) condensation of 3-mercaptopropionic acid with hydrochloric acid to yield 3-mercaptoacrylic acid; (2) esterification of 3-mercaptoacrylic acid with glycine to form Fmoc-L-Ser; and (3) deprotection of Fmoc protecting group., Recommanded Product: Fmoc-Ser-OH

Ethers are a class of organic compounds that contain an ether group—an oxygen atom connected to two alkyl or aryl groups. 73724-45-5, formula is C18H17NO5, Name is Fmoc-Ser-OH.They have the general formula R–O–R′, where R and R′ represent the alkyl or aryl groups. Recommanded Product: Fmoc-Ser-OH.

Mendonca, Diogo A.;Bakker, Mariet;Cruz-Oliveira, Christine;Neves, Vera;Jimenez, Maria Angeles;Defaus, Sira;Cavaco, Marco;Veiga, Ana Salome;Cadima-Couto, Iris;Castanho, Miguel A. R. B.;Andreu, David;Todorovski, Toni research published 《 Penetrating the blood-brain barrier with new peptide-porphyrin conjugates having anti-HIV activity》, the research content is summarized as follows. Passing through the blood-brain barrier (BBB) to treat neurol. conditions is one of the main hurdles in modern medicine. Many drugs with promising in vitro profiles become ineffective in vivo due to BBB restrictive permeability. In particular, this includes drugs such as antiviral porphyrins, with the ability to fight brain-resident viruses causing diseases such as HIV-associated neurocognitive disorders (HAND). In the last two decades, BBB shuttles, particularly peptide-based ones, have shown promise in carrying various payloads across the BBB. Thus, peptide-drug conjugates (PDCs) formed by covalent attachment of a BBB peptide shuttle and an antiviral drug may become key therapeutic tools in treating neurol. disorders of viral origin. In this study, we have used various approaches (guanidinium, phosphonium, and carbodiimide-based couplings) for on-resin synthesis of new peptide-porphyrin conjugates (PPCs) with BBB-crossing and potential antiviral activity. After careful fine-tuning of the synthetic chem., DIC/oxyma has emerged as a preferred method, by which 14 different PPCs have been made and satisfactorily characterized. The PPCs are prepared by coupling a porphyrin carboxyl group to an amino group (either N-terminal or a Lys side chain) of the peptide shuttle and show effective in vitro BBB translocation ability, low cytotoxicity toward mouse brain endothelial cells, and low hemolytic activity. Three of the PPCs, MP-P5, P4-MP, and P4-L-MP, effectively inhibiting HIV infectivity in vitro, stand out as most promising. Their efficacy against other brain-targeting viruses (Dengue, Zika, and SARS-CoV-2) is currently under evaluation, with preliminary results confirming that PPCs are a promising strategy to treat viral brain infections.

73724-45-5, Fmoc-Ser-OH, also known as Fmoc-Ser-OH, is a useful research compound. Its molecular formula is C18H17NO5 and its molecular weight is 327.3 g/mol. The purity is usually 95%.
Fmoc-L-Ser-OH is a synthetic peptide that belongs to the group of glycopeptides. It is used as a model for such compounds and has been shown to have antimicrobial activity in vitro against gram-positive bacteria, especially Staphylococcus epidermidis. This compound was synthesized from 3-mercaptopropionic acid and chloride in the presence of hydroxyl groups and epidermal growth factor. The synthetic pathway can be divided into three steps: (1) condensation of 3-mercaptopropionic acid with hydrochloric acid to yield 3-mercaptoacrylic acid; (2) esterification of 3-mercaptoacrylic acid with glycine to form Fmoc-L-Ser; and (3) deprotection of Fmoc protecting group., Recommanded Product: Fmoc-Ser-OH

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Melo, Anely Maciel de team published research in Food Chemistry in 2022 | 530-59-6

Recommanded Product: 3,5-Dimethoxy-4-hydroxycinnamic acid, Sinapinic acid is a chemical compound that is the dihydroxybenzoic acid derivative of sinapic acid. It has been shown to have anti-inflammatory properties in vitro and in vivo. Sinapinic acid inhibits the activity of various enzymes, such as cyclooxygenase (COX), lipoxygenase (LOX), and 5-lipoxygenase-activating protein (FLAP). It also decreases levels of adhesion molecules and downregulates inflammatory response genes. Sinapinic acid has been shown to reduce inflammation by inhibiting the formation of proinflammatory mediators, such as prostaglandin E2 or leukotriene B4, in endothelial cells and mammary epithelial cells.
Sinapic acid is a phenylpropanoid hydroxycinnamic acid with diverse biological activities. Sinapic acid inhibits collagen-induced human platelet aggregation by up to 70% in vitro (IC50 = 1.03 mM). It scavenges 2,2-diphenyl-1-picrylhydrazyl (DPPH; ) and 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS) free radicals with IC50 values of 8.3 and 5.4 μg/ml, respectively. Sinapic acid (200 μM) reduces colony formation of SW480 human colon carcinoma cells by 4-fold. It also inhibits colony formation of E. coli, S. enteritidis, and S. aureus on agar (MICs = 2.2, 2, and 1.8 mM, respectively). In vivo, sinapic acid (4 mg/kg, p.o.) increases the time spent in the open arms of the elevated plus maze by approximately 15% in mice, an effect that can be blocked by the GABAA receptor antagonists flumazenil and bicuculline. Sinapic acid is also commonly used as a matrix in protein mass spectrometry.
Sinapic acid analytical standard provided with w/w absolute assay, to be used for quantitative titration.
Sinapic acid is an hydroxycinnamic acid derivative that occurs naturally in Brassicaceae species.
cis-Sinapic acid, also known as cis-sinapate or synapitic acid, belongs to the class of organic compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated. cis-Sinapic acid is considered to be a practically insoluble (in water) and relatively neutral molecule. Within the cell, cis-sinapic acid is primarily located in the cytoplasm. Outside of the human body, cis-sinapic acid can be found in common pea and pulses. This makes cis-sinapic acid a potential biomarker for the consumption of these food products.
Cis-sinapic acid is a 3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoic acid in which the double bond has cis-configuration. It has been isolated from the shoots of alfalfa. It has a role as a plant metabolite., 530-59-6.

Ethers can again be classified into two varieties: if the alkyl or aryl groups are the same on both sides of the oxygen atom, 530-59-6, formula is C11H12O5, Name is 3,5-Dimethoxy-4-hydroxycinnamic acid. Then it is a simple or symmetrical ether, whereas if they are different, the ethers are called mixed or unsymmetrical ethers. Recommanded Product: 3,5-Dimethoxy-4-hydroxycinnamic acid.

Melo, Anely Maciel de;Costa, Bruno Patricio;Ikeda, Monica;Ribani, Rosemary Hoffmann research published 《 Identification of bioactive compounds, morphology, and nutritional composition of bacupari (Garcinia brasiliensis (Mart)) pulp powder in two stages of maturation – A short communication》, the research content is summarized as follows. In view of the low exploitation Garcinia brasiliensis and its richness in bioactive compounds, this article is justified by the need to develop a product which adds value to this fruit. The objective was to develop bacupari pulp powder (BPP) in two stages of maturation and to evaluate its physicochem., microstructural and bioactive properties. Data showed that BPP can be considered as a source of fiber (≃16 g.100-1/ P < 0.05), a result verified via SEM. The immature pulp can be considered as a source of protein, as it contains>6 g.100-1. Regarding the antioxidant content, it was found that the ABTS method showed the best result (2449μmolTE/100 g/P > 0.05) and it was the first time that the bioactive compounds folic acid, trans-ferulic acid, and sinapic acid were identified in this fruit. Therefore, the use of the BPP form is an alternative for the consumption of this underexploited fruit.

Recommanded Product: 3,5-Dimethoxy-4-hydroxycinnamic acid, Sinapinic acid is a chemical compound that is the dihydroxybenzoic acid derivative of sinapic acid. It has been shown to have anti-inflammatory properties in vitro and in vivo. Sinapinic acid inhibits the activity of various enzymes, such as cyclooxygenase (COX), lipoxygenase (LOX), and 5-lipoxygenase-activating protein (FLAP). It also decreases levels of adhesion molecules and downregulates inflammatory response genes. Sinapinic acid has been shown to reduce inflammation by inhibiting the formation of proinflammatory mediators, such as prostaglandin E2 or leukotriene B4, in endothelial cells and mammary epithelial cells.
Sinapic acid is a phenylpropanoid hydroxycinnamic acid with diverse biological activities. Sinapic acid inhibits collagen-induced human platelet aggregation by up to 70% in vitro (IC50 = 1.03 mM). It scavenges 2,2-diphenyl-1-picrylhydrazyl (DPPH; ) and 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS) free radicals with IC50 values of 8.3 and 5.4 μg/ml, respectively. Sinapic acid (200 μM) reduces colony formation of SW480 human colon carcinoma cells by 4-fold. It also inhibits colony formation of E. coli, S. enteritidis, and S. aureus on agar (MICs = 2.2, 2, and 1.8 mM, respectively). In vivo, sinapic acid (4 mg/kg, p.o.) increases the time spent in the open arms of the elevated plus maze by approximately 15% in mice, an effect that can be blocked by the GABAA receptor antagonists flumazenil and bicuculline. Sinapic acid is also commonly used as a matrix in protein mass spectrometry.
Sinapic acid analytical standard provided with w/w absolute assay, to be used for quantitative titration.
Sinapic acid is an hydroxycinnamic acid derivative that occurs naturally in Brassicaceae species.
cis-Sinapic acid, also known as cis-sinapate or synapitic acid, belongs to the class of organic compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated. cis-Sinapic acid is considered to be a practically insoluble (in water) and relatively neutral molecule. Within the cell, cis-sinapic acid is primarily located in the cytoplasm. Outside of the human body, cis-sinapic acid can be found in common pea and pulses. This makes cis-sinapic acid a potential biomarker for the consumption of these food products.
Cis-sinapic acid is a 3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoic acid in which the double bond has cis-configuration. It has been isolated from the shoots of alfalfa. It has a role as a plant metabolite., 530-59-6.

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Melelli, Alessia team published research in Industrial Crops and Products in 2022 | 530-59-6

Application In Synthesis of 530-59-6, Sinapinic acid is a chemical compound that is the dihydroxybenzoic acid derivative of sinapic acid. It has been shown to have anti-inflammatory properties in vitro and in vivo. Sinapinic acid inhibits the activity of various enzymes, such as cyclooxygenase (COX), lipoxygenase (LOX), and 5-lipoxygenase-activating protein (FLAP). It also decreases levels of adhesion molecules and downregulates inflammatory response genes. Sinapinic acid has been shown to reduce inflammation by inhibiting the formation of proinflammatory mediators, such as prostaglandin E2 or leukotriene B4, in endothelial cells and mammary epithelial cells.
Sinapic acid is a phenylpropanoid hydroxycinnamic acid with diverse biological activities. Sinapic acid inhibits collagen-induced human platelet aggregation by up to 70% in vitro (IC50 = 1.03 mM). It scavenges 2,2-diphenyl-1-picrylhydrazyl (DPPH; ) and 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS) free radicals with IC50 values of 8.3 and 5.4 μg/ml, respectively. Sinapic acid (200 μM) reduces colony formation of SW480 human colon carcinoma cells by 4-fold. It also inhibits colony formation of E. coli, S. enteritidis, and S. aureus on agar (MICs = 2.2, 2, and 1.8 mM, respectively). In vivo, sinapic acid (4 mg/kg, p.o.) increases the time spent in the open arms of the elevated plus maze by approximately 15% in mice, an effect that can be blocked by the GABAA receptor antagonists flumazenil and bicuculline. Sinapic acid is also commonly used as a matrix in protein mass spectrometry.
Sinapic acid analytical standard provided with w/w absolute assay, to be used for quantitative titration.
Sinapic acid is an hydroxycinnamic acid derivative that occurs naturally in Brassicaceae species.
cis-Sinapic acid, also known as cis-sinapate or synapitic acid, belongs to the class of organic compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated. cis-Sinapic acid is considered to be a practically insoluble (in water) and relatively neutral molecule. Within the cell, cis-sinapic acid is primarily located in the cytoplasm. Outside of the human body, cis-sinapic acid can be found in common pea and pulses. This makes cis-sinapic acid a potential biomarker for the consumption of these food products.
Cis-sinapic acid is a 3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoic acid in which the double bond has cis-configuration. It has been isolated from the shoots of alfalfa. It has a role as a plant metabolite., 530-59-6.

Ethers can again be classified into two varieties: if the alkyl or aryl groups are the same on both sides of the oxygen atom, 530-59-6, formula is C11H12O5, Name is 3,5-Dimethoxy-4-hydroxycinnamic acid. Then it is a simple or symmetrical ether, whereas if they are different, the ethers are called mixed or unsymmetrical ethers. Application In Synthesis of 530-59-6.

Melelli, Alessia;Durand, Sylvie;Alvarado, Camille;Kervoelen, Antoine;Foucat, Loic;Gregoire, Marie;Arnould, Olivier;Falourd, Xavier;Callebert, Franck;Ouagne, Pierre;Geairon, Audrey;Daniel, Sylviane;Jamme, Frederic;Mauve, Caroline;Gakiere, Bertrand;Bourmaud, Alain;Beaugrand, Johnny research published 《 Anticipating global warming effects: A comprehensive study of drought impact of both flax plants and fibres》, the research content is summarized as follows. Currently, the effects of global warming are one of the most important topics on the agendas of all governments and international economic and scientific organisations on the planet. Temperatures and rainfall will be especially subjected to increasing deregulation, and thus crop yields will be affected according to geog. location. Cellulosic materials, such as bast fibers, are considered one solution to decrease human environmental impact: they are a renewable resource, biodegradable and have a lower carbon emission than synthetic materials. However, their quality, yield and mech. properties depend on environmental conditions during plant growth. In this paper, we explored the possible impact of seasonal drought linked to future climate change on flax plants and fiber quality. Two batches of the same textile flax plant cultivar were grown under two different field environmental conditions in the same year, one taken as a control under regular climatic conditions and the second one grown under drought stress. Carbon isotopic discrimination reveal an increase in water stress plant of the fiber δ13C, reflecting that plants are indeed suffering from drought stress from a physiol. point of view. We characterized the mech. properties, biochem. and morphol. parameters at both the stem and tech. fiber scales. Our results showed that the plants of the two batches were morphol. different and that the drought-stressed plants were smaller, mainly in terms of the height of the stem (-28%) and diameter (-16%). Biochem. analyses highlighted a contrasting lignin content between the two batches. A difference in protein content was also measured, with an increased amount in stressed flax plants, with contrasting distributions revealed by tyrosine and tryptophan monitored by synchrotron UV fluorescence. In addition, polysaccharide composition was also quantified with an increase in mannose and an important decrease in glucose in the drought-stressed tech. fibers. Surprisingly, despite the difference in biochem. composition and morphol. parameters, the mech. properties of elementary flax fibers extracted from the two batches were not significantly different. This suggests that drought can affect the yield and biochem. of the extracted tech. flax fibers but does not necessarily impact the longitudinal mech. performance of single fibers.

Application In Synthesis of 530-59-6, Sinapinic acid is a chemical compound that is the dihydroxybenzoic acid derivative of sinapic acid. It has been shown to have anti-inflammatory properties in vitro and in vivo. Sinapinic acid inhibits the activity of various enzymes, such as cyclooxygenase (COX), lipoxygenase (LOX), and 5-lipoxygenase-activating protein (FLAP). It also decreases levels of adhesion molecules and downregulates inflammatory response genes. Sinapinic acid has been shown to reduce inflammation by inhibiting the formation of proinflammatory mediators, such as prostaglandin E2 or leukotriene B4, in endothelial cells and mammary epithelial cells.
Sinapic acid is a phenylpropanoid hydroxycinnamic acid with diverse biological activities. Sinapic acid inhibits collagen-induced human platelet aggregation by up to 70% in vitro (IC50 = 1.03 mM). It scavenges 2,2-diphenyl-1-picrylhydrazyl (DPPH; ) and 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS) free radicals with IC50 values of 8.3 and 5.4 μg/ml, respectively. Sinapic acid (200 μM) reduces colony formation of SW480 human colon carcinoma cells by 4-fold. It also inhibits colony formation of E. coli, S. enteritidis, and S. aureus on agar (MICs = 2.2, 2, and 1.8 mM, respectively). In vivo, sinapic acid (4 mg/kg, p.o.) increases the time spent in the open arms of the elevated plus maze by approximately 15% in mice, an effect that can be blocked by the GABAA receptor antagonists flumazenil and bicuculline. Sinapic acid is also commonly used as a matrix in protein mass spectrometry.
Sinapic acid analytical standard provided with w/w absolute assay, to be used for quantitative titration.
Sinapic acid is an hydroxycinnamic acid derivative that occurs naturally in Brassicaceae species.
cis-Sinapic acid, also known as cis-sinapate or synapitic acid, belongs to the class of organic compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated. cis-Sinapic acid is considered to be a practically insoluble (in water) and relatively neutral molecule. Within the cell, cis-sinapic acid is primarily located in the cytoplasm. Outside of the human body, cis-sinapic acid can be found in common pea and pulses. This makes cis-sinapic acid a potential biomarker for the consumption of these food products.
Cis-sinapic acid is a 3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoic acid in which the double bond has cis-configuration. It has been isolated from the shoots of alfalfa. It has a role as a plant metabolite., 530-59-6.

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Mehta, Deepak team published research in Food and Bioprocess Technology in 2022 | 530-59-6

530-59-6, Sinapinic acid is a chemical compound that is the dihydroxybenzoic acid derivative of sinapic acid. It has been shown to have anti-inflammatory properties in vitro and in vivo. Sinapinic acid inhibits the activity of various enzymes, such as cyclooxygenase (COX), lipoxygenase (LOX), and 5-lipoxygenase-activating protein (FLAP). It also decreases levels of adhesion molecules and downregulates inflammatory response genes. Sinapinic acid has been shown to reduce inflammation by inhibiting the formation of proinflammatory mediators, such as prostaglandin E2 or leukotriene B4, in endothelial cells and mammary epithelial cells.
Sinapic acid is a phenylpropanoid hydroxycinnamic acid with diverse biological activities. Sinapic acid inhibits collagen-induced human platelet aggregation by up to 70% in vitro (IC50 = 1.03 mM). It scavenges 2,2-diphenyl-1-picrylhydrazyl (DPPH; ) and 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS) free radicals with IC50 values of 8.3 and 5.4 μg/ml, respectively. Sinapic acid (200 μM) reduces colony formation of SW480 human colon carcinoma cells by 4-fold. It also inhibits colony formation of E. coli, S. enteritidis, and S. aureus on agar (MICs = 2.2, 2, and 1.8 mM, respectively). In vivo, sinapic acid (4 mg/kg, p.o.) increases the time spent in the open arms of the elevated plus maze by approximately 15% in mice, an effect that can be blocked by the GABAA receptor antagonists flumazenil and bicuculline. Sinapic acid is also commonly used as a matrix in protein mass spectrometry.
Sinapic acid analytical standard provided with w/w absolute assay, to be used for quantitative titration.
Sinapic acid is an hydroxycinnamic acid derivative that occurs naturally in Brassicaceae species.
cis-Sinapic acid, also known as cis-sinapate or synapitic acid, belongs to the class of organic compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated. cis-Sinapic acid is considered to be a practically insoluble (in water) and relatively neutral molecule. Within the cell, cis-sinapic acid is primarily located in the cytoplasm. Outside of the human body, cis-sinapic acid can be found in common pea and pulses. This makes cis-sinapic acid a potential biomarker for the consumption of these food products.
Cis-sinapic acid is a 3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoic acid in which the double bond has cis-configuration. It has been isolated from the shoots of alfalfa. It has a role as a plant metabolite., Recommanded Product: 3,5-Dimethoxy-4-hydroxycinnamic acid

Ethers lack the hydroxyl groups of alcohols. Without the strongly polarized O―H bond, ether molecules cannot engage in hydrogen bonding with each other. 530-59-6, formula is C11H12O5, Name is 3,5-Dimethoxy-4-hydroxycinnamic acid. Ethers do have nonbonding electron pairs on their oxygen atoms, however, and they can form hydrogen bonds with other molecules (alcohols, amines, etc.) that have O―H or N―H bonds. Recommanded Product: 3,5-Dimethoxy-4-hydroxycinnamic acid.

Mehta, Deepak;Yadav, Kamlendra;Chaturvedi, Kartikey;Shivhare, U. S.;Yadav, Sudesh Kumar research published 《 Impact of Cold Plasma on Extraction of Polyphenol From De-Oiled Rice and Corn Bran: Improvement in Extraction Efficiency, In Vitro Digestibility, Antioxidant Activity, Cytotoxicity and Anti-Inflammatory Responses》, the research content is summarized as follows. The main objective of this study was to investigate the impact of atm. and vacuum cold plasma on extraction efficiency of polyphenols from de-oiled rice and corn bran. Further, the extracted phenolic compounds from rice and corn bran were analyzed for their bioactivity, in vitro digestibility, cytotoxicity and anti-inflammatory activities. In this study, cold plasma processing was observed to significantly (p < 0.05) enhance the content of individual polyphenols extracted from rice bran (vanillin, ferulic acid, sinapic acid and chlorogenic acid) and corn bran (4-hydroxybenzaldehyde, p-coumaric, sinapic acid and ferulic acid) in comparison with conventional extraction Moreover, significant increment was also found in total phenolic content, total flavonoid content and antioxidant activity of extracted polyphenols. In vitro digestibility was observed higher for vacuum cold-plasma-treated rice bran polyphenol, while it was higher for atm. cold-plasma-treated corn bran polyphenols. Cell viability and anti-inflammatory activity were also found to be significantly enhanced (p < 0.05) with cold-plasma-extracted polyphenols. The enhanced release of polyphenols could be due to puncture in brans upon cold plasma treatment as revealed through scanning electron microscope. Hence, the present study documented the use of atm. and vacuum cold plasma for the first time for enhanced extraction of polyphenols from industrial waste like rice and corn bran. Also, the obtained polyphenols were observed for better in vitro digestibility, cell viability and anti-inflammatory activity.

530-59-6, Sinapinic acid is a chemical compound that is the dihydroxybenzoic acid derivative of sinapic acid. It has been shown to have anti-inflammatory properties in vitro and in vivo. Sinapinic acid inhibits the activity of various enzymes, such as cyclooxygenase (COX), lipoxygenase (LOX), and 5-lipoxygenase-activating protein (FLAP). It also decreases levels of adhesion molecules and downregulates inflammatory response genes. Sinapinic acid has been shown to reduce inflammation by inhibiting the formation of proinflammatory mediators, such as prostaglandin E2 or leukotriene B4, in endothelial cells and mammary epithelial cells.
Sinapic acid is a phenylpropanoid hydroxycinnamic acid with diverse biological activities. Sinapic acid inhibits collagen-induced human platelet aggregation by up to 70% in vitro (IC50 = 1.03 mM). It scavenges 2,2-diphenyl-1-picrylhydrazyl (DPPH; ) and 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS) free radicals with IC50 values of 8.3 and 5.4 μg/ml, respectively. Sinapic acid (200 μM) reduces colony formation of SW480 human colon carcinoma cells by 4-fold. It also inhibits colony formation of E. coli, S. enteritidis, and S. aureus on agar (MICs = 2.2, 2, and 1.8 mM, respectively). In vivo, sinapic acid (4 mg/kg, p.o.) increases the time spent in the open arms of the elevated plus maze by approximately 15% in mice, an effect that can be blocked by the GABAA receptor antagonists flumazenil and bicuculline. Sinapic acid is also commonly used as a matrix in protein mass spectrometry.
Sinapic acid analytical standard provided with w/w absolute assay, to be used for quantitative titration.
Sinapic acid is an hydroxycinnamic acid derivative that occurs naturally in Brassicaceae species.
cis-Sinapic acid, also known as cis-sinapate or synapitic acid, belongs to the class of organic compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated. cis-Sinapic acid is considered to be a practically insoluble (in water) and relatively neutral molecule. Within the cell, cis-sinapic acid is primarily located in the cytoplasm. Outside of the human body, cis-sinapic acid can be found in common pea and pulses. This makes cis-sinapic acid a potential biomarker for the consumption of these food products.
Cis-sinapic acid is a 3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoic acid in which the double bond has cis-configuration. It has been isolated from the shoots of alfalfa. It has a role as a plant metabolite., Recommanded Product: 3,5-Dimethoxy-4-hydroxycinnamic acid

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Md, Shadab team published research in Journal of Drug Delivery Science and Technology in 2021 | 111-90-0

111-90-0, Diethylene glycol monoethyl ether appears as a colorless, slightly viscous liquid with a mild pleasant odor. Flash point near 190°F. Used to make soaps, dyes, and other chemicals.
Diethylene glycol monoethyl ether is a primary alcohol that is ethanol substituted by a 2-ethoxyethoxy group at position 2. It has a role as a protic solvent. It is a diether, a primary alcohol and a hydroxypolyether. It derives from a diethylene glycol., Reference of 111-90-0

Ethers feature bent C–O–C linkages. In dimethyl ether, the bond angle is 111° and C–O distances are 141 pm. 111-90-0, formula is C6H14O3, Name is Diethylene Glycol Monoethyl Ether. The barrier to rotation about the C–O bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3. Reference of 111-90-0.

Md, Shadab;Alhakamy, Nabil A.;Aldawsari, Hibah M.;Ahmad, Javed;Alharbi, Waleed S.;Asfour, Hani Z. research published 《 Resveratrol loaded self-nanoemulsifying drug delivery system (SNEDDS) for pancreatic cancer: Formulation design, optimization and in vitro evaluation》, the research content is summarized as follows. Pancreatic cancers are mostly inoperable and have a low survival rate. Nanomedicine has provided some promise in overcoming some major hurdles in pancreatic cancer. Meanwhile, resveratrol (RESV) has been reported to be useful in pancreatic cancer therapeutics. Therefore, the purpose of the study was to develop SNEDDS formulation of RESV for therapeutic application in pancreatic cancer therapy. Capryol 90, Cremophor RH, and Transcutol P were selected as the oil, surfactant, and co-surfactant resp. after preliminary studies. From the pseudo-ternary phase diagram, the surfactant:co-surfactant mixture (Smix) ratio of 3:1 was found to be most suitable for the formulation of SNEDDS. A central composite rotatable design (CCRD) was employed for studying the effect of volumes of oil and Smixon PS and PDI of globules formed from the SNEDDS. For this purpose, the Oil:Smix ratio of 1:4 was chosen for the central point in the design. The results of CCRD showed that a higher volume of oils results in a higher PS and PDI. Similarly, a higher volume of Smix resulted in a lower PS and PDI. The SNEDDS formulation for characterization was chosen based on the particle size (PS), polydispersity index (PDI), and thermodn. stability. The TEM images revealed uniformity in size and morphol. of the formed droplets. Meanwhile, the in vitro RESV release was rapid from RESV-SNEDDS. The cell viability studies, change in mitochondrial membrane potential (MMP), COX-2 and NF-kB levels, and the wound scratch method showed enhanced cytotoxicity of RESV-SNEDDS compared to RESV alone. Overall, the formulation of RESV into SNEDSS was proved to be a promising approach for overcoming the therapeutic hindrances related to pancreatic cancer.

111-90-0, Diethylene glycol monoethyl ether appears as a colorless, slightly viscous liquid with a mild pleasant odor. Flash point near 190°F. Used to make soaps, dyes, and other chemicals.
Diethylene glycol monoethyl ether is a primary alcohol that is ethanol substituted by a 2-ethoxyethoxy group at position 2. It has a role as a protic solvent. It is a diether, a primary alcohol and a hydroxypolyether. It derives from a diethylene glycol., Reference of 111-90-0

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

McCoy, Michael A. team published research in Journal of Medicinal Chemistry in 2022 | 73724-45-5

Synthetic Route of 73724-45-5, Fmoc-Ser-OH, also known as Fmoc-Ser-OH, is a useful research compound. Its molecular formula is C18H17NO5 and its molecular weight is 327.3 g/mol. The purity is usually 95%.
Fmoc-L-Ser-OH is a synthetic peptide that belongs to the group of glycopeptides. It is used as a model for such compounds and has been shown to have antimicrobial activity in vitro against gram-positive bacteria, especially Staphylococcus epidermidis. This compound was synthesized from 3-mercaptopropionic acid and chloride in the presence of hydroxyl groups and epidermal growth factor. The synthetic pathway can be divided into three steps: (1) condensation of 3-mercaptopropionic acid with hydrochloric acid to yield 3-mercaptoacrylic acid; (2) esterification of 3-mercaptoacrylic acid with glycine to form Fmoc-L-Ser; and (3) deprotection of Fmoc protecting group., 73724-45-5.

Ethers can again be classified into two varieties: if the alkyl or aryl groups are the same on both sides of the oxygen atom, 73724-45-5, formula is C18H17NO5, Name is Fmoc-Ser-OH. Then it is a simple or symmetrical ether, whereas if they are different, the ethers are called mixed or unsymmetrical ethers. Synthetic Route of 73724-45-5.

McCoy, Michael A.;Spicer, Dominique;Wells, Neil;Hoogewijs, Kurt;Fiedler, Marc;Baud, Matthias G. J. research published 《 Biophysical Survey of Small-Molecule β-Catenin Inhibitors: A Cautionary Tale》, the research content is summarized as follows. The canonical Wingless-related integration site signaling pathway plays a critical role in human physiol., and its dysregulation can lead to an array of diseases. β-Catenin is a multifunctional protein within this pathway and an attractive yet challenging therapeutic target, most notably in oncol. This has stimulated the search for potent small-mol. inhibitors binding directly to the β-catenin surface to inhibit its protein-protein interactions and downstream signaling. Here, we provide an account of the claimed (and some putative) small-mol. ligands of β-catenin from the literature. Through in silico anal., we show that most of these mols. contain promiscuous chem. substructures notorious for interfering with screening assays. Finally, and in line with this anal., we demonstrate using orthogonal biophys. techniques that none of the examined small mols. bind at the surface of β-catenin. While shedding doubts on their reported mode of action, this study also reaffirms β-catenin as a prominent target in drug discovery.

Synthetic Route of 73724-45-5, Fmoc-Ser-OH, also known as Fmoc-Ser-OH, is a useful research compound. Its molecular formula is C18H17NO5 and its molecular weight is 327.3 g/mol. The purity is usually 95%.
Fmoc-L-Ser-OH is a synthetic peptide that belongs to the group of glycopeptides. It is used as a model for such compounds and has been shown to have antimicrobial activity in vitro against gram-positive bacteria, especially Staphylococcus epidermidis. This compound was synthesized from 3-mercaptopropionic acid and chloride in the presence of hydroxyl groups and epidermal growth factor. The synthetic pathway can be divided into three steps: (1) condensation of 3-mercaptopropionic acid with hydrochloric acid to yield 3-mercaptoacrylic acid; (2) esterification of 3-mercaptoacrylic acid with glycine to form Fmoc-L-Ser; and (3) deprotection of Fmoc protecting group., 73724-45-5.

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem