Malamas, Michael S. team published research in Journal of Medicinal Chemistry in 2021 | 122775-35-3

122775-35-3, 3,4-Dimethoxyphenylboronic acid is a useful research compound. Its molecular formula is C8H11BO4 and its molecular weight is 181.98 g/mol. The purity is usually 95%.
3,4-Dimethoxyphenylboronic acid contains varying amounts of anhydride.
3,4-Dimethoxyphenylboronic acid is a bacterial mutagen. A useful intermediate for organic synthesis.
3,4-Dimethoxyphenylboronic acid is a boronate ester that has been shown to be an effective coupling partner for the Suzuki reaction. It has also been used in cancer therapy and as a photochemical probe for the study of biological properties. 3,4-Dimethoxyphenylboronic acid has been shown to demethylate DNA and inhibit methionine aminopeptidase activity. It also cross-couples with halides, such as chlorides or iodides, and activates tertiary alcohols. 3,4-Dimethoxyphenylboronic acid is soluble in organic solvents and can be used in supramolecular chemistry., Quality Control of 122775-35-3

Ethers do have nonbonding electron pairs on their oxygen atoms, 122775-35-3, formula is C8H11BO4, Name is 3,4-Dimethoxyphenylboronic acid. The ability to form hydrogen bonds with other compounds makes ethers particularly good solvents for a wide variety of organic compounds and a surprisingly large number of inorganic compounds. Quality Control of 122775-35-3.

Malamas, Michael S.;Pavlopoulos, Spiro;Alapafuja, Shakiru O.;Farah, Shrouq I.;Zvonok, Alexander;Mohammad, Khadijah A.;West, Jay;Perry, Nicholas Thomas;Pelekoudas, Dimitrios N.;Rajarshi, Girija;Shields, Christina;Chandrashekhar, Honrao;Wood, Jodi;Makriyannis, Alexandros research published 《 Design and Structure-Activity Relationships of Isothiocyanates as Potent and Selective N-Acylethanolamine-Hydrolyzing Acid Amidase Inhibitors》, the research content is summarized as follows. N-Acylethanolamines are signaling lipid mols. implicated in pathophysiol. conditions associated with inflammation and pain. N-Acylethanolamine acid amidase (NAAA) favorably hydrolyzes lipid palmitoylethanolamide, which plays a key role in the regulation of inflammatory and pain processes. The synthesis and structure-activity relationship studies encompassing the isothiocyanate pharmacophore have produced potent low nanomolar inhibitors for hNAAA, while exhibiting high selectivity (>100-fold) against other serine hydrolases and cysteine peptidases. We have followed a target-based structure-activity relationship approach, supported by computational methods and known cocrystals of hNAAA. We have identified systemically active inhibitors with good plasma stability (t1/2 > 2 h) and microsomal stability (t1/2 ∼ 15-30 min) as pharmacol. tools to investigate the role of NAAA in inflammation, pain, and drug addiction.

122775-35-3, 3,4-Dimethoxyphenylboronic acid is a useful research compound. Its molecular formula is C8H11BO4 and its molecular weight is 181.98 g/mol. The purity is usually 95%.
3,4-Dimethoxyphenylboronic acid contains varying amounts of anhydride.
3,4-Dimethoxyphenylboronic acid is a bacterial mutagen. A useful intermediate for organic synthesis.
3,4-Dimethoxyphenylboronic acid is a boronate ester that has been shown to be an effective coupling partner for the Suzuki reaction. It has also been used in cancer therapy and as a photochemical probe for the study of biological properties. 3,4-Dimethoxyphenylboronic acid has been shown to demethylate DNA and inhibit methionine aminopeptidase activity. It also cross-couples with halides, such as chlorides or iodides, and activates tertiary alcohols. 3,4-Dimethoxyphenylboronic acid is soluble in organic solvents and can be used in supramolecular chemistry., Quality Control of 122775-35-3

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Malacarne, Miryam Chiara team published research in Photochemical & Photobiological Sciences in 2021 | 111-90-0

Quality Control of 111-90-0, Diethylene glycol monoethyl ether appears as a colorless, slightly viscous liquid with a mild pleasant odor. Flash point near 190°F. Used to make soaps, dyes, and other chemicals.
Diethylene glycol monoethyl ether is a primary alcohol that is ethanol substituted by a 2-ethoxyethoxy group at position 2. It has a role as a protic solvent. It is a diether, a primary alcohol and a hydroxypolyether. It derives from a diethylene glycol., 111-90-0.

Ethers are a class of organic compounds that contain an ether group—an oxygen atom connected to two alkyl or aryl groups. 111-90-0, formula is C6H14O3, Name is Diethylene Glycol Monoethyl Ether.They have the general formula R–O–R′, where R and R′ represent the alkyl or aryl groups. Quality Control of 111-90-0.

Malacarne, Miryam Chiara;Banfi, Stefano;Rugiero, Matteo;Caruso, Enrico research published 《 Drug delivery systems for the photodynamic application of two photosensitizers belonging to the porphyrin family》, the research content is summarized as follows. Photodynamic therapy involves the concomitant action of three components, light with an appropriate wavelength, mol. oxygen, and a mol., able to absorb an electromagnetic radiation, called photosensitizer (PS). A fundamental aspect is the bioavailability of the PS that is directly related to some physicochem. properties of the PS itself as it should feature a certain degree of lipophilicity to easily cross the cell membrane, however, at the same time, should be sufficiently water-soluble to navigate in the bloodstream. Consequently, the use of a system for drug delivery becomes essential when photosensitizers with a high degree of lipophilicity are considered. In this work, we present three different drug delivery systems, microemulsions, emulsions and liposomes all capable of carrying a PS belonging to the porphyrin family: the tetra-Ph porphyrin (TPP) and the 4-hydroxyphenyl porphyrin (THPP), which show a relevant different degree of lipophilicity. A series of microemulsions (ME) and emulsions (E) were prepared, among which two formulations, one for THPP and one for TPP, have been chosen. The stability of these two carriers was monitored over time and under various temperature conditions. With the same criteria, two liposomal formulations have been also identified and analyzed. The four formulations mentioned above (one ME, one E and two liposomes) have been tested on SKOV3 tumor cell line comparing the photodynamic activity of the porphyrin formulations vs. the aqueous/organic (DMSO) solution of the same two PSs. The results show that all the formulations have proved to be excellent carriers and that the liposomal formulation enhance the photodynamic efficacy of both porphyrins.

Quality Control of 111-90-0, Diethylene glycol monoethyl ether appears as a colorless, slightly viscous liquid with a mild pleasant odor. Flash point near 190°F. Used to make soaps, dyes, and other chemicals.
Diethylene glycol monoethyl ether is a primary alcohol that is ethanol substituted by a 2-ethoxyethoxy group at position 2. It has a role as a protic solvent. It is a diether, a primary alcohol and a hydroxypolyether. It derives from a diethylene glycol., 111-90-0.

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Makino, Takuya team published research in Bioorganic & Medicinal Chemistry Letters in 2020 | 38256-93-8

Electric Literature of 38256-93-8, 2-Methoxy-N-methylethanamine is a useful research compound. Its molecular formula is C4H11NO and its molecular weight is 89.14 g/mol. The purity is usually 95%.
2-Methoxy-N-methylethanamine is a drug that binds to the cannabinoid receptor CB1. It has been shown to be effective in the treatment of cardiac arrhythmia and may also be used as an anti-inflammatory drug. 2MEMEA has been shown to have pharmacokinetic properties that are different from those of other amines, which may be due to its ability to form hydrogen bonds with water molecules. 2MEMEA also has diversified effects on some types of cancer cells, including hyperproliferative and amine-dependent cancers., 38256-93-8.

Ethers lack the hydroxyl groups of alcohols. Without the strongly polarized O―H bond, ether molecules cannot engage in hydrogen bonding with each other. 38256-93-8, formula is C4H11NO, Name is 2-Methoxy-N-methylethanamine. Ethers do have nonbonding electron pairs on their oxygen atoms, however, and they can form hydrogen bonds with other molecules (alcohols, amines, etc.) that have O―H or N―H bonds. Electric Literature of 38256-93-8.

Makino, Takuya;Ishida, Junya;Yamanaka, Toshio;Ohki, Hidenori;Uchida, Masao;Sawada, Masae;Barrett, David research published 《 Discovery of a novel 9-position modified second-generation anti-HCV candidate via bioconversion and semi-synthesis of FR901459》, the research content is summarized as follows. Evidence that hepatitis C virus (HCV) utilizes cellular cyclophilin proteins in the virus replication cycle has increased attention on cyclophilin inhibitors as attractive therapeutic targets in the treatment of HCV. Previous reports have described a number of non-immunosuppressive cyclophilin inhibitors, most of which require many synthetic steps for their preparation Sasamura et al. have previously reported the isolation of bioconversion derivative 4. This analog is a convenient starting point for optimization due to the presence of the readily modifiable primary hydroxyl group and because it shows moderate anti-HCV activity and decreased immunosuppressive activity. We have also established an efficient C-alkylation reaction at the 3-position. Through a detailed structure-activity relationship study, we discovered a new type of clin. candidate 14(I) which requires a short synthetic process and has potent anti-HCV activity and reduced immunosuppressive activity, as well as improved aqueous solubility and pharmacokinetics.

Electric Literature of 38256-93-8, 2-Methoxy-N-methylethanamine is a useful research compound. Its molecular formula is C4H11NO and its molecular weight is 89.14 g/mol. The purity is usually 95%.
2-Methoxy-N-methylethanamine is a drug that binds to the cannabinoid receptor CB1. It has been shown to be effective in the treatment of cardiac arrhythmia and may also be used as an anti-inflammatory drug. 2MEMEA has been shown to have pharmacokinetic properties that are different from those of other amines, which may be due to its ability to form hydrogen bonds with water molecules. 2MEMEA also has diversified effects on some types of cancer cells, including hyperproliferative and amine-dependent cancers., 38256-93-8.

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Maharjan, Ravi team published research in Molecules in 2022 | 111-90-0

111-90-0, Diethylene glycol monoethyl ether appears as a colorless, slightly viscous liquid with a mild pleasant odor. Flash point near 190°F. Used to make soaps, dyes, and other chemicals.
Diethylene glycol monoethyl ether is a primary alcohol that is ethanol substituted by a 2-ethoxyethoxy group at position 2. It has a role as a protic solvent. It is a diether, a primary alcohol and a hydroxypolyether. It derives from a diethylene glycol., Quality Control of 111-90-0

Ethers feature bent C–O–C linkages. In dimethyl ether, the bond angle is 111° and C–O distances are 141 pm. 111-90-0, formula is C6H14O3, Name is Diethylene Glycol Monoethyl Ether. The barrier to rotation about the C–O bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3. Quality Control of 111-90-0.

Maharjan, Ravi;Jeong, Junoh;Bhujel, Ripesh;Kim, Min-Soo;Han, Hyo-Kyung;Kim, Nam Ah;Jeong, Seong Hoon research published 《 Correlation of Solubility Thermodynamics of Glibenclamide with Recrystallization and In Vitro Release Profile》, the research content is summarized as follows. The solubility of glibenclamide was evaluated in DMSO, NMP, 1,4-dioxane, PEG 400, Transcutol HP, water, and aqueous mixtures (T = 293.15∼323.15 K). It was then recrystallized to solvate and compressed into tablets, of which 30-day stability and dissolution was studied. It had a higher solubility in 1,4-dioxane, DMSO, NMP (Xexp = 2.30 × 103, 3.08 × 104, 2.90 × 104) at 323.15 K, its mixture (Xexp = 1.93 × 103, 1.89 × 104, 1.58 × 104) at 298.15 K, and 1,4-dioxane (ω) + water (1-ω) mixture ratio of w = 0.8 (Xexp = 3.74 × 103) at 323.15 K. Modified Apelblat (RMSD ≤ 0.519) and CNIBS/R-K model (RMSD ≤ 0.358) suggested good comparability with the exptl. solubility The min. value of ΔG° vs ΔH° at 0.70 < x2 < 0.80 suggested higher solubility at that molar concentration Based on the solubility, it was recrystallized into the solvate, which was granulated and compressed into tablets. Among the studied solvates, the tablets of glibenclamide dioxane solvate had a higher initial (95.51%) and 30-day (93.74%) dissolution compared to glibenclamide reference (28.93%). There was no stability issue even after granulation, drying, or at pH 7.4. Thus, glibenclamide dioxane solvate could be an alternative form to improve the mol.’s properties.

111-90-0, Diethylene glycol monoethyl ether appears as a colorless, slightly viscous liquid with a mild pleasant odor. Flash point near 190°F. Used to make soaps, dyes, and other chemicals.
Diethylene glycol monoethyl ether is a primary alcohol that is ethanol substituted by a 2-ethoxyethoxy group at position 2. It has a role as a protic solvent. It is a diether, a primary alcohol and a hydroxypolyether. It derives from a diethylene glycol., Quality Control of 111-90-0

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Mahadev, Manohar team published research in Pharmaceuticals in 2022 | 111-90-0

Electric Literature of 111-90-0, Diethylene glycol monoethyl ether appears as a colorless, slightly viscous liquid with a mild pleasant odor. Flash point near 190°F. Used to make soaps, dyes, and other chemicals.
Diethylene glycol monoethyl ether is a primary alcohol that is ethanol substituted by a 2-ethoxyethoxy group at position 2. It has a role as a protic solvent. It is a diether, a primary alcohol and a hydroxypolyether. It derives from a diethylene glycol., 111-90-0.

Ethers are a class of organic compounds that contain an ether group—an oxygen atom connected to two alkyl or aryl groups. 111-90-0, formula is C6H14O3, Name is Diethylene Glycol Monoethyl Ether.They have the general formula R–O–R′, where R and R′ represent the alkyl or aryl groups. Electric Literature of 111-90-0.

Mahadev, Manohar;Nandini, Hittanahalli S.;Ramu, Ramith;Gowda, Devegowda V.;Almarhoon, Zainab M.;Al-Ghorbani, Mohammed;Mabkhot, Yahia N. research published 《 Fabrication and Evaluation of Quercetin Nanoemulsion: A Delivery System with Improved Bioavailability and Therapeutic Efficacy in Diabetes Mellitus》, the research content is summarized as follows. The current study was intended to fabricate and evaluate ultrasonically assisted quercetin nanoemulsion (Que-NE) for improved bioavailability and therapeutic effectiveness against diabetes mellitus in rats. Et oleate, Tween 20, and Labrasol were chosen as oil, surfactant, and cosurfactant, resp. Box-Behnken design (BBD) was employed to study the influence of process variables such as % surfactant and cosurfactant mixture (Smix) (5 to 7%), % amplitude (20-30%) and sonication time (2.5-7.5 min) on droplet size, polydispersibility index (PDI), and % entrapment efficiency (%EE) were studied. The optimization predicted that 9% Smix at 25% amplitude for 2.5 min would produce Que-NE with a droplet size of 125.51 nm, 0.215 PDI, and 87.04% EE. Moreover, the optimized Que-NE exhibited appreciable droplet size and PDI when stored at 5, 30, and 40°C for 45 days. Also, the morphol. characterization by transmission electron microscope (TEM) indicated the spherical shape of the optimized nanoemulsion. Furthermore, the Que-NE compared to pure quercetin exhibited superior release and enhanced oral bioavailability. The streptozocin-induced antidiabetic study in rats revealed that the Que-NE had remarkable protective and therapeutic properties in managing body weight, blood glucose level, lipid profile, and tissue injury markers, alongside the structure of pancreatic β-cells and hepatocytes being protected. Thus, the developed Que-NE could be of potential use as a substitute strategy for diabetes.

Electric Literature of 111-90-0, Diethylene glycol monoethyl ether appears as a colorless, slightly viscous liquid with a mild pleasant odor. Flash point near 190°F. Used to make soaps, dyes, and other chemicals.
Diethylene glycol monoethyl ether is a primary alcohol that is ethanol substituted by a 2-ethoxyethoxy group at position 2. It has a role as a protic solvent. It is a diether, a primary alcohol and a hydroxypolyether. It derives from a diethylene glycol., 111-90-0.

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Maddala, Sudhakar team published research in Chemistry – A European Journal in 2021 | 122775-35-3

Recommanded Product: 3,4-Dimethoxyphenylboronic acid, 3,4-Dimethoxyphenylboronic acid is a useful research compound. Its molecular formula is C8H11BO4 and its molecular weight is 181.98 g/mol. The purity is usually 95%.
3,4-Dimethoxyphenylboronic acid contains varying amounts of anhydride.
3,4-Dimethoxyphenylboronic acid is a bacterial mutagen. A useful intermediate for organic synthesis.
3,4-Dimethoxyphenylboronic acid is a boronate ester that has been shown to be an effective coupling partner for the Suzuki reaction. It has also been used in cancer therapy and as a photochemical probe for the study of biological properties. 3,4-Dimethoxyphenylboronic acid has been shown to demethylate DNA and inhibit methionine aminopeptidase activity. It also cross-couples with halides, such as chlorides or iodides, and activates tertiary alcohols. 3,4-Dimethoxyphenylboronic acid is soluble in organic solvents and can be used in supramolecular chemistry., 122775-35-3.

Ethers do have nonbonding electron pairs on their oxygen atoms, 122775-35-3, formula is C8H11BO4, Name is 3,4-Dimethoxyphenylboronic acid. The ability to form hydrogen bonds with other compounds makes ethers particularly good solvents for a wide variety of organic compounds and a surprisingly large number of inorganic compounds. Recommanded Product: 3,4-Dimethoxyphenylboronic acid.

Maddala, Sudhakar;Panua, Anirban;Venkatakrishnan, Parthasarathy research published 《 Steering Scholl Oxidative Heterocoupling by Tuning Topology and Electronics for Building Thiananographenes and Their Functional N-/C-Congeners》, the research content is summarized as follows. This report systematically demonstrates how topol. variation of electronics and reactivity in thiophene substrates can lead to efficient oxidative heterocoupling. Bis(biaryl)thiophenes having reactive α- and β-positions open are the choice of substrates. The cyclizing arene partners are so electronically tuned for thiophene’s reactivity (at α- and β-) as to establish C-C bond oxidatively generating sym. as well as unsym. diphenanthrothiophenes which are basic thiananographenes. Depending on the cyclizing-couple’s electronics, either arene- or thiophene-centered oxidation initiates C-C heterocoupling. The potential utility of these simple thiananographenes is further unfurled by converting them to functional N-/C-graphene segments that are aza-corannulene precursor and tetrabenzospirobifluorene. Their bright emission and extended electrochem. stability are remarkable that may be potentially important and applicable.

Recommanded Product: 3,4-Dimethoxyphenylboronic acid, 3,4-Dimethoxyphenylboronic acid is a useful research compound. Its molecular formula is C8H11BO4 and its molecular weight is 181.98 g/mol. The purity is usually 95%.
3,4-Dimethoxyphenylboronic acid contains varying amounts of anhydride.
3,4-Dimethoxyphenylboronic acid is a bacterial mutagen. A useful intermediate for organic synthesis.
3,4-Dimethoxyphenylboronic acid is a boronate ester that has been shown to be an effective coupling partner for the Suzuki reaction. It has also been used in cancer therapy and as a photochemical probe for the study of biological properties. 3,4-Dimethoxyphenylboronic acid has been shown to demethylate DNA and inhibit methionine aminopeptidase activity. It also cross-couples with halides, such as chlorides or iodides, and activates tertiary alcohols. 3,4-Dimethoxyphenylboronic acid is soluble in organic solvents and can be used in supramolecular chemistry., 122775-35-3.

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Ma, Yan team published research in Journal of Food Composition and Analysis in 2022 | 530-59-6

Safety of 3,5-Dimethoxy-4-hydroxycinnamic acid, Sinapinic acid is a chemical compound that is the dihydroxybenzoic acid derivative of sinapic acid. It has been shown to have anti-inflammatory properties in vitro and in vivo. Sinapinic acid inhibits the activity of various enzymes, such as cyclooxygenase (COX), lipoxygenase (LOX), and 5-lipoxygenase-activating protein (FLAP). It also decreases levels of adhesion molecules and downregulates inflammatory response genes. Sinapinic acid has been shown to reduce inflammation by inhibiting the formation of proinflammatory mediators, such as prostaglandin E2 or leukotriene B4, in endothelial cells and mammary epithelial cells.
Sinapic acid is a phenylpropanoid hydroxycinnamic acid with diverse biological activities. Sinapic acid inhibits collagen-induced human platelet aggregation by up to 70% in vitro (IC50 = 1.03 mM). It scavenges 2,2-diphenyl-1-picrylhydrazyl (DPPH; ) and 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS) free radicals with IC50 values of 8.3 and 5.4 μg/ml, respectively. Sinapic acid (200 μM) reduces colony formation of SW480 human colon carcinoma cells by 4-fold. It also inhibits colony formation of E. coli, S. enteritidis, and S. aureus on agar (MICs = 2.2, 2, and 1.8 mM, respectively). In vivo, sinapic acid (4 mg/kg, p.o.) increases the time spent in the open arms of the elevated plus maze by approximately 15% in mice, an effect that can be blocked by the GABAA receptor antagonists flumazenil and bicuculline. Sinapic acid is also commonly used as a matrix in protein mass spectrometry.
Sinapic acid analytical standard provided with w/w absolute assay, to be used for quantitative titration.
Sinapic acid is an hydroxycinnamic acid derivative that occurs naturally in Brassicaceae species.
cis-Sinapic acid, also known as cis-sinapate or synapitic acid, belongs to the class of organic compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated. cis-Sinapic acid is considered to be a practically insoluble (in water) and relatively neutral molecule. Within the cell, cis-sinapic acid is primarily located in the cytoplasm. Outside of the human body, cis-sinapic acid can be found in common pea and pulses. This makes cis-sinapic acid a potential biomarker for the consumption of these food products.
Cis-sinapic acid is a 3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoic acid in which the double bond has cis-configuration. It has been isolated from the shoots of alfalfa. It has a role as a plant metabolite., 530-59-6.

Ethers feature bent C–O–C linkages. In dimethyl ether, the bond angle is 111° and C–O distances are 141 pm. 530-59-6, formula is C11H12O5, Name is 3,5-Dimethoxy-4-hydroxycinnamic acid. The barrier to rotation about the C–O bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3. Safety of 3,5-Dimethoxy-4-hydroxycinnamic acid.

Ma, Yan;Wang, Pei;Gu, Zhenxin;Sun, Maomao;Yang, Runqiang research published 《 Effects of germination on physio-biochemical metabolism and phenolic acids of soybean seeds》, the research content is summarized as follows. In this study, changes of phenolic acids and antioxidant capacity during germination of soybean seeds were investigated. Results revealed that germination enhanced sprout growth, changed endogenous phytohormones level and caused oxidative damage, but enhanced phenolic acids accumulation. Eight individual phenolic acids in soybean sprouts were identified by HPLC. Gallic acid and protocatechuic acid mainly present in free form, while vanillic acid mainly present in bound form, and p-hydroxybenzoic acid, syringic acid, p-coumaric acid, ferulic acid and sinapic acid were both identified in free and bound phenolic extracts Both free and bound phenolic acids contents significantly increased during germination. The enzymes activities of phenylalanine ammonia lyase (PAL), cinnamic acid 4-hydroxylase (C4H) and 4-coumarate CoA ligase (4CL) that participated in the biosynthesis of phenolic acids were up-regulated. These results contribute to the further insights into the health-promoting compounds of soybean sprouts.

Safety of 3,5-Dimethoxy-4-hydroxycinnamic acid, Sinapinic acid is a chemical compound that is the dihydroxybenzoic acid derivative of sinapic acid. It has been shown to have anti-inflammatory properties in vitro and in vivo. Sinapinic acid inhibits the activity of various enzymes, such as cyclooxygenase (COX), lipoxygenase (LOX), and 5-lipoxygenase-activating protein (FLAP). It also decreases levels of adhesion molecules and downregulates inflammatory response genes. Sinapinic acid has been shown to reduce inflammation by inhibiting the formation of proinflammatory mediators, such as prostaglandin E2 or leukotriene B4, in endothelial cells and mammary epithelial cells.
Sinapic acid is a phenylpropanoid hydroxycinnamic acid with diverse biological activities. Sinapic acid inhibits collagen-induced human platelet aggregation by up to 70% in vitro (IC50 = 1.03 mM). It scavenges 2,2-diphenyl-1-picrylhydrazyl (DPPH; ) and 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS) free radicals with IC50 values of 8.3 and 5.4 μg/ml, respectively. Sinapic acid (200 μM) reduces colony formation of SW480 human colon carcinoma cells by 4-fold. It also inhibits colony formation of E. coli, S. enteritidis, and S. aureus on agar (MICs = 2.2, 2, and 1.8 mM, respectively). In vivo, sinapic acid (4 mg/kg, p.o.) increases the time spent in the open arms of the elevated plus maze by approximately 15% in mice, an effect that can be blocked by the GABAA receptor antagonists flumazenil and bicuculline. Sinapic acid is also commonly used as a matrix in protein mass spectrometry.
Sinapic acid analytical standard provided with w/w absolute assay, to be used for quantitative titration.
Sinapic acid is an hydroxycinnamic acid derivative that occurs naturally in Brassicaceae species.
cis-Sinapic acid, also known as cis-sinapate or synapitic acid, belongs to the class of organic compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated. cis-Sinapic acid is considered to be a practically insoluble (in water) and relatively neutral molecule. Within the cell, cis-sinapic acid is primarily located in the cytoplasm. Outside of the human body, cis-sinapic acid can be found in common pea and pulses. This makes cis-sinapic acid a potential biomarker for the consumption of these food products.
Cis-sinapic acid is a 3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoic acid in which the double bond has cis-configuration. It has been isolated from the shoots of alfalfa. It has a role as a plant metabolite., 530-59-6.

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Ma, Qiuyan team published research in AAPS PharmSciTech in 2021 | 111-90-0

Synthetic Route of 111-90-0, Diethylene glycol monoethyl ether appears as a colorless, slightly viscous liquid with a mild pleasant odor. Flash point near 190°F. Used to make soaps, dyes, and other chemicals.
Diethylene glycol monoethyl ether is a primary alcohol that is ethanol substituted by a 2-ethoxyethoxy group at position 2. It has a role as a protic solvent. It is a diether, a primary alcohol and a hydroxypolyether. It derives from a diethylene glycol., 111-90-0.

Ethers lack the hydroxyl groups of alcohols. Without the strongly polarized O―H bond, ether molecules cannot engage in hydrogen bonding with each other. 111-90-0, formula is C6H14O3, Name is Diethylene Glycol Monoethyl Ether. Ethers do have nonbonding electron pairs on their oxygen atoms, however, and they can form hydrogen bonds with other molecules (alcohols, amines, etc.) that have O―H or N―H bonds. Synthetic Route of 111-90-0.

Ma, Qiuyan;Zhang, Jing;Lu, Bohong;Lin, Huaqing;Sarkar, Rajib;Wu, Tao;Li, Xuee research published 《 Nanoemulgel for Improved Topical Delivery of Desonide: Formulation Design and Characterization》, the research content is summarized as follows. This research aimed to develop a novel drug delivery system to improve treatment of skin disorders. The system is comprised of a Carbopol 980-based nanoemulgel (NE-gel) containing a desonide (DES; 0.05%, weight/weight) nanoemulsion (NE), which has a small particle size, high encapsulation efficiency, good thermodn. stability, good permeation ability, and high skin retention. DES-loaded NE (DES-NE) was prepared by high-pressure homogenization. The developed formulation was characterized by differential scanning calorimetry (DSC), X-ray diffraction, drug release, skin permeation, and drug retention. DES in vitro release and skin permeation studies with different formulations of artificial membrane and rat abdominal skin were performed with the Franz diffusion cell system. Confocal laser scanning microscopy (CLSM) was used to detect the localization and permeation pathways of drugs in the skin. Compared with com. available gel (CA-gel) and NE, the NE-gel release process conformed to the Higuchi release model (R2 = 0.9813). NE-gel prolonged the drug release time and allowed for reduced administration dose and frequency. The unit cumulative permeation of NE and NE-gel through the skin for 12 h was 63.13 ± 2.78 and 42.53 ± 2.06μg/cm2, resp., values significantly higher (p < 0.01) than that of the CA-gel (30.65 ± 1.25μg/cm2) and CA-cream (15.21 ± 0.97μg/cm2). The DES-NE and DES NE-gel skin drug retention was significantly higher than com. available formulations (p < 0.01). Hence, the prepared NE-gel is a potential vehicle for improved topical DES delivery for better treatment of skin disorders.

Synthetic Route of 111-90-0, Diethylene glycol monoethyl ether appears as a colorless, slightly viscous liquid with a mild pleasant odor. Flash point near 190°F. Used to make soaps, dyes, and other chemicals.
Diethylene glycol monoethyl ether is a primary alcohol that is ethanol substituted by a 2-ethoxyethoxy group at position 2. It has a role as a protic solvent. It is a diether, a primary alcohol and a hydroxypolyether. It derives from a diethylene glycol., 111-90-0.

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Luo, Zheng team published research in AAPS PharmSciTech in 2021 | 111-90-0

111-90-0, Diethylene glycol monoethyl ether appears as a colorless, slightly viscous liquid with a mild pleasant odor. Flash point near 190°F. Used to make soaps, dyes, and other chemicals.
Diethylene glycol monoethyl ether is a primary alcohol that is ethanol substituted by a 2-ethoxyethoxy group at position 2. It has a role as a protic solvent. It is a diether, a primary alcohol and a hydroxypolyether. It derives from a diethylene glycol., Application In Synthesis of 111-90-0

Ethers feature bent C–O–C linkages. In dimethyl ether, the bond angle is 111° and C–O distances are 141 pm. 111-90-0, formula is C6H14O3, Name is Diethylene Glycol Monoethyl Ether. The barrier to rotation about the C–O bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3. Application In Synthesis of 111-90-0.

Luo, Zheng;Liu, Chao;Quan, Peng;Zhang, Yimeng;Fang, Liang research published 《 Effect of Chemical Penetration Enhancer-Adhesive Interaction on Drug Release from Transdermal Patch: Mechanism Study Based on FT-IR Spectroscopy, 13C NMR Spectroscopy, and Molecular Simulation》, the research content is summarized as follows. Chem. penetration enhancers (CPEs) are commonly added into transdermal patches to impart improved skin permeation of drug. However, significant unexplained variability in drug release kinetics in transdermal patches is possible as a result of the addition of CPEs; investigations into the underlying mechanisms are still limited. In the present study, a diverse set of CPEs was employed to draw broad conclusions. Solubility parameters of CPEs and acrylate pressure-sensitive adhesive were calculated by mol. dynamics simulation and Fedors group contribution method to evaluate drug-adhesive miscibility. CPE-adhesive interaction was characterized by FT-IR study, 13C NMR spectroscopy, and mol. docking simulation. Results showed that release enhancement ratio (ERR) of CPEs for zolmitriptan was rank ordered as iso-Pr myristate > azone > Plurol Oleique CC497 > Span 80 > N-methylpyrrolidone > Transcutol P. It was found that solubility parameter difference (Δδ) between CPE and adhesive was neg. related with ERR. It was proved that hydrogen bonding between CPE and adhesive would increase drug release rate, but only if the CPE showed good miscibility with adhesive. CPE like iso-Pr myristate, which had good miscibility with adhesive, could decrease drug-adhesive interaction leading to the release of drug from adhesive.

111-90-0, Diethylene glycol monoethyl ether appears as a colorless, slightly viscous liquid with a mild pleasant odor. Flash point near 190°F. Used to make soaps, dyes, and other chemicals.
Diethylene glycol monoethyl ether is a primary alcohol that is ethanol substituted by a 2-ethoxyethoxy group at position 2. It has a role as a protic solvent. It is a diether, a primary alcohol and a hydroxypolyether. It derives from a diethylene glycol., Application In Synthesis of 111-90-0

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Mondal, Haripriyo et al. published their research in Chemical Communications (Cambridge, United Kingdom) in 2020 |CAS: 578-58-5

The Article related to bromolactone aryl bromide chemoselective preparation, methoxybutanesulfonamide catalyst bromosuccinimide mediated bromocyclization bromination, chemoselective bromination bromocyclization methoxysulfonamide catalyst bromosuccinimide and other aspects.Application In Synthesis of 2-Methylanisole

Mondal, Haripriyo; Sk, Raja Md; Maji, Modhu Sudan published an article in 2020, the title of the article was Cooperativity within the catalyst: alkoxyamide as a catalyst for bromocyclization and bromination of (hetero)aromatics.Application In Synthesis of 2-Methylanisole And the article contains the following content:

N-Methoxy-1-butanesulfonamide was a recyclable catalyst for the activation of N-bromosuccinimide to perform bromocyclization and bromination reactions of unsaturated carboxylic acids, alkenes and indoles with pendant nucleophiles, and arenes in heptane, where adequate suppression of the background reactions was observed, to yield bromolactones, bromomethyl-substituted heterocycles, fused indolines such as pyrroloindolines, and aryl bromides. The key feature of the active site is the alkoxy group attached to the sulfonamide moiety, which facilitates the acceptance as well as the delivery of bromonium species from the bromine source to the substrates. The experimental process involved the reaction of 2-Methylanisole(cas: 578-58-5).Application In Synthesis of 2-Methylanisole

The Article related to bromolactone aryl bromide chemoselective preparation, methoxybutanesulfonamide catalyst bromosuccinimide mediated bromocyclization bromination, chemoselective bromination bromocyclization methoxysulfonamide catalyst bromosuccinimide and other aspects.Application In Synthesis of 2-Methylanisole

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem