Demuner, Antonio Jacinto’s team published research in Journal of Natural Products in 2013-12-27 | CAS: 127972-00-3

Journal of Natural Products published new progress about Alternaria. 127972-00-3 belongs to class ethers-buliding-blocks, name is 2-Methoxy-5-methylphenylboronic acid, and the molecular formula is C8H11BO3, SDS of cas: 127972-00-3.

Demuner, Antonio Jacinto published the artcileThe Fungal Phytotoxin Alternariol 9-Methyl Ether and Some of Its Synthetic Analogues Inhibit the Photosynthetic Electron Transport Chain, SDS of cas: 127972-00-3, the main research area is Alternaria phytotoxin alternariol methyl ether analog preparation inhibition photosynthesis.

Alternariol and monomethylalternariol are natural phytotoxins produced by some fungal strains, such as Nimbya and Alternaria. These substances confer virulence to phytopathogens, yet no information is available concerning their mode of action. Here it is shown that in the micromolar range alternariol 9-Me ether is able to inhibit the electron transport chain (IC50 = 29.1 ± 6.5 μM) in isolated spinach chloroplasts. Since its effectiveness is limited by poor solubility in water, several alternariol analogs were synthesized using different aromatic aldehydes. The synthesized 6H-benzo-[c]-cromen-6-ones, 5H-chromene-[4,3-b]-pyridin-5-one, and 5H-chromene-[4,3-c]-pyridin-5-one also showed inhibitory properties, and three 6H-benzo-[c]-cromen-6-ones were more effective (IC50 = 12.8-22.8 μM) than the lead compound Their addition to the culture medium of a cyanobacterial model strain was found to inhibit algal growth, with a relative effectiveness that was consistent with their activity in vitro. In contrast, the growth of a nonphotosynthetic plant cell culture was poorly affected. These compounds may represent a novel lead for the development of new active principles targeting photosynthesis.

Journal of Natural Products published new progress about Alternaria. 127972-00-3 belongs to class ethers-buliding-blocks, name is 2-Methoxy-5-methylphenylboronic acid, and the molecular formula is C8H11BO3, SDS of cas: 127972-00-3.

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Bach, Nicolai N.’s team published research in Angewandte Chemie, International Edition in 2022-05-02 | CAS: 23783-42-8

Angewandte Chemie, International Edition published new progress about Alkylation. 23783-42-8 belongs to class ethers-buliding-blocks, name is 2,5,8,11-Tetraoxatridecan-13-ol, and the molecular formula is C9H20O5, Safety of 2,5,8,11-Tetraoxatridecan-13-ol.

Bach, Nicolai N. published the artcileActive Mechanical Threading by a Molecular Motor, Safety of 2,5,8,11-Tetraoxatridecan-13-ol, the main research area is active mech threading mol motor; Hemithioindigo; Indigoids; Molecular Machines; Molecular Motors; Photochemistry.

Mol. motors transform external energy input into directional motions and offer exquisite precision for nano-scale manipulations. To make full use of mol. motor capacities, their directional motions need to be transmitted and used for powering downstream mol. events. Here we present a macrocyclic mol. motor structure able to perform repetitive mol. threading of a flexible tetraethylene glycol chain through the macrocycle. This mech. threading event is actively powered by the motor and leads to a direct translation of the unidirectional motor rotation into unidirectional translation motion (chain vs. ring). The mechanism of the active mech. threading is elucidated and the actual threading step is identified as a combined helix inversion and threading event. The established mol. machine function resembles the crucial step of macroscopic weaving or sewing processes and therefore offers a first entry point to a “”mol. knitting”” counterpart.

Angewandte Chemie, International Edition published new progress about Alkylation. 23783-42-8 belongs to class ethers-buliding-blocks, name is 2,5,8,11-Tetraoxatridecan-13-ol, and the molecular formula is C9H20O5, Safety of 2,5,8,11-Tetraoxatridecan-13-ol.

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Hu, Xiaomei’s team published research in Journal of Chemistry in 2014 | CAS: 622-86-6

Journal of Chemistry published new progress about Alkylation. 622-86-6 belongs to class ethers-buliding-blocks, name is (2-Chloroethoxy)benzene, and the molecular formula is C8H9ClO, SDS of cas: 622-86-6.

Hu, Xiaomei published the artcileModification of thionucleobases in ionic liquids, SDS of cas: 622-86-6, the main research area is ionic liquid catalyst thioalkylation nucleobase preparation thionucleobase.

A simple method was established for the preparation of thio-substituted thionucleobases using room temperature ionic liquids (RTILs) such as 1-butyl-3-methylimidazolium trifluoroacetate [BMIM]+[CF3COO]- and 1-methoxyethyl-3-methylimidazolium trifluoroacetate [MeOEtMIM]+[CF3COO]- as solvents and catalysts without any other catalyst. These reactions proceeded efficiently in RTILs with excellent yield of products. RTILs can be recycled and reused effectively without further purification

Journal of Chemistry published new progress about Alkylation. 622-86-6 belongs to class ethers-buliding-blocks, name is (2-Chloroethoxy)benzene, and the molecular formula is C8H9ClO, SDS of cas: 622-86-6.

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Nantaba, Florence’s team published research in Chemosphere in 2021-01-31 | CAS: 121-00-6

Chemosphere published new progress about Alkalinity. 121-00-6 belongs to class ethers-buliding-blocks, name is 4-Hydroxy-3-tert-butylanisole, and the molecular formula is C11H16O2, COA of Formula: C11H16O2.

Nantaba, Florence published the artcileTemporal dynamics and ecotoxicological risk assessment of personal care products, phthalate ester plasticizers, and organophosphorus flame retardants in water from Lake Victoria, Uganda, COA of Formula: C11H16O2, the main research area is ecotoxicol risk assessment water pollution Lake Victoria Uganda; East africa; Flame retardants; Lake victoria; Personal care products; Plasticizers; Risk assessment.

For the first time the occurrence of 25 organic micropollutants (OMPs) including, eleven personal care products (PCPs), six phthalate ester plasticizers (PEPs) and eight organophosphorus flame retardants (OPFRs) was investigated in 72 water samples obtained from five bays in the Uganda sector of Lake Victoria. In addition, an assessment of the potential ecotoxic risk of the target OMPs to aquatic organisms was conducted. Water samples were analyzed for the target OMPs using gas chromatog. coupled with GC/MS. All the target PCPs were found in all the water samples with the exception of musk ketone and 2,6-di-tert-butylphenol. Triclosan, benzophenone, and 4-methylbenzylidine camphor were the most predominant PCPs. All the six plasticizers were found in all the water samples with di-Bu phthalate, and bis-(2-ethylhexyl) phthalate detected at the highest concentrations Tricresyl phosphate, tris-(2-chloroethyl) phosphate and tri-Ph phosphate were the most dominant OPFRs. The highest concentrations of OMPs were recorded in Murchison and Thurston Bays, presumably due to industrial wastewater effluents from the highly industrialized localities of the two Bays. Ecotoxicol. risk assessment showed that PCPs (triclosan, musk ketone, and 4-MBC), plasticizers (di-Bu phthalate, bis-(2-ethylhexyl) adipate and bis-(2-ethylhexyl) phthalate) and OPFRs (tricresyl phosphate, tri-Ph phosphate and tris-(2-chloroethyl) phosphate) pose a high ecotoxic risk to lives of aquatic organisms.

Chemosphere published new progress about Alkalinity. 121-00-6 belongs to class ethers-buliding-blocks, name is 4-Hydroxy-3-tert-butylanisole, and the molecular formula is C11H16O2, COA of Formula: C11H16O2.

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Bartolec, Boris’s team published research in Langmuir in 2019-04-30 | CAS: 23783-42-8

Langmuir published new progress about Aggregates. 23783-42-8 belongs to class ethers-buliding-blocks, name is 2,5,8,11-Tetraoxatridecan-13-ol, and the molecular formula is C9H20O5, Computed Properties of 23783-42-8.

Bartolec, Boris published the artcileEmergence of Compartments Formed from Unconventional Surfactants in Dynamic Combinatorial Libraries, Computed Properties of 23783-42-8, the main research area is combinatorial library self assembly membrane.

Assembly processes can drive the selection of self-assembling mols. in dynamic combinatorial libraries, yielding self-synthesizing materials. We now show how such selection in a dynamic combinatorial library made from an amphiphilic building block which, by itself, assembles into micelles, can yield membranous aggregates ranging from vesicles to sponge phases. These aggregates are made from a mixture of unconventional surfactant mols., showing the power of dynamic combinatorial selection approaches for the discovery of new, not readily predictable, self-assembly motifs.

Langmuir published new progress about Aggregates. 23783-42-8 belongs to class ethers-buliding-blocks, name is 2,5,8,11-Tetraoxatridecan-13-ol, and the molecular formula is C9H20O5, Computed Properties of 23783-42-8.

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Yiu, Asteria’s team published research in Macromolecular Chemistry and Physics in 2020-08-15 | CAS: 23783-42-8

Macromolecular Chemistry and Physics published new progress about Aggregates. 23783-42-8 belongs to class ethers-buliding-blocks, name is 2,5,8,11-Tetraoxatridecan-13-ol, and the molecular formula is C9H20O5, COA of Formula: C9H20O5.

Yiu, Asteria published the artcileFacile Synthesis of Novel Thermo-Responsive Polyvalerolactones with Tunable LCSTs, COA of Formula: C9H20O5, the main research area is thermoresponsive polyvalerolactone biodegradable tunable lower critical solution temperature; oligoethylene glycol functionalized polyvalerolactone thermal tunable.

Thermoresponsive polymers have emerged as promising candidates for biomedical applications. Seven novel oligoethylene glycol (OEG) functionalized polyvalerolactones P1-P7 are synthesized from poly(α-allyl-δ-valerolactone) via thiol-ene addition post-polymerization modification. All seven polymers exhibit thermoresponsive behavior with lower critical solution temperatures (LCSTs) ranging from 13.8 to 92.2°C. Polymers P5-P7 are synthesized via thiol-ene addition reaction using two thiol mixtures at three different ratios. LCSTs of P5-P7 fall in between those of P1 and P2, and exhibit a linear relationship, indicating a tunable thermoresponsive system. This newly developed system offers great control for a desired thermoresponsive biocompatible, biodegradable polymeric system with desired LCSTs.

Macromolecular Chemistry and Physics published new progress about Aggregates. 23783-42-8 belongs to class ethers-buliding-blocks, name is 2,5,8,11-Tetraoxatridecan-13-ol, and the molecular formula is C9H20O5, COA of Formula: C9H20O5.

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Li, Na’s team published research in Organic Electronics in 2022-09-30 | CAS: 23783-42-8

Organic Electronics published new progress about Aggregates. 23783-42-8 belongs to class ethers-buliding-blocks, name is 2,5,8,11-Tetraoxatridecan-13-ol, and the molecular formula is C9H20O5, Product Details of C9H20O5.

Li, Na published the artcileBacteriochlorin aggregates as dopant-free hole-transporting materials for perovskite solar cells, Product Details of C9H20O5, the main research area is bacteriochlorin aggregate hole transport perovskite solar cell electrochem property.

Organic-inorganic hybrid perovskite solar cells (PSCs) have attracted great interests not only of academic field but also of industrial world toward practical applications in the last decade due to their extremely low production cost and excellent photo-phys. properties. Hole-transporting layer (HTL) as an integral component of PSC plays an important role in elevating its performance. In this work, five bacteriochlorophyll-a derivatives characterized by different C17-propionate residue were prepared and their J-type aggregates were investigated as HTLs of PSCs. It was confirmed that the nature of the introduced C17-propionate side chains have negligible effects on the electrochem. properties of main dye unit, such as the electronic absorption spectra and energy levels. However, the different lipophilicity, hydrophilicity, or hydrophobicity of chain characters affect the solubility of each dye component, resulting in diverse surface morphologies of their aggregate films as revealed by AFM observations. Furthermore, the five solid films prepared by spin-coating method showed discrepant charge extraction and transport abilities as HTLs, which were supported by both photo luminescence spectra and electrochem. impedance spectroscopy measurement results and were concluded to be the fundamental reason of the different PSC performance.

Organic Electronics published new progress about Aggregates. 23783-42-8 belongs to class ethers-buliding-blocks, name is 2,5,8,11-Tetraoxatridecan-13-ol, and the molecular formula is C9H20O5, Product Details of C9H20O5.

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Shi, Kaiyuan’s team published research in Advanced Functional Materials in 2022-08-15 | CAS: 143-24-8

Advanced Functional Materials published new progress about Adsorption. 143-24-8 belongs to class ethers-buliding-blocks, name is 2,5,8,11,14-Pentaoxapentadecane, and the molecular formula is C10H22O5, COA of Formula: C10H22O5.

Shi, Kaiyuan published the artcileElectrochemical Polishing: An Effective Strategy for Eliminating Li Dendrites, COA of Formula: C10H22O5, the main research area is lithium dendrite electrochem polishing deposition density functional theory.

Dendritic growth of lithium (Li) is well-known to originate from deposition on rough and inhomogeneous Li-metal surfaces, and has long been a central problem in charging lithium metal batteries. Herein, a universal strategy is proposed for dendrite suppression by both in situ and ex situ electrochem. polishing of Li metal from the corrosion science perspective. This polishing technique greatly smoothens the surface of the Li and dynamically regenerates a homogeneous solid electrolyte interphase film simultaneously during cell cycling, which suppresses the nucleation sites for dendritic Li and establishes an ideal matrix for even deposition of Li. As a result, the polished Li presents a stable voltage profile and high Li utilization in both the sym. cells and the full cells coupled with LiNi0.8Co0.1Mn0.1O2 (NCM811) or LiFePO4. The long cycle life of polished Li electrodes clearly demonstrates a uniform dendrite-free deposition of Li. This strategy shows a new direction to realize a uniform deposition of Li by providing a regenerative homogeneous Li-surface during repeated cycling.

Advanced Functional Materials published new progress about Adsorption. 143-24-8 belongs to class ethers-buliding-blocks, name is 2,5,8,11,14-Pentaoxapentadecane, and the molecular formula is C10H22O5, COA of Formula: C10H22O5.

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Maho, Anthony’s team published research in Chemistry of Materials in 2020-10-13 | CAS: 143-24-8

Chemistry of Materials published new progress about Adsorption. 143-24-8 belongs to class ethers-buliding-blocks, name is 2,5,8,11,14-Pentaoxapentadecane, and the molecular formula is C10H22O5, Synthetic Route of 143-24-8.

Maho, Anthony published the artcileAqueous processing and spray deposition of polymer-wrapped tin-doped indium oxide nanocrystals as electrochromic thin films, Synthetic Route of 143-24-8, the main research area is spray deposition polymer surface ITO nanocrystal electrochromic thin film.

Plasmonic metal oxide nanocrystals are interesting electrochromic materials because they display high modulation of IR light, fast switching kinetics, and durability. Nanocrystals facilitate solution-based and high-throughput deposition, but typically require handling hazardous nonaqueous solvents and further processing of the as-deposited film with energy-intensive or chem. treatments. We report on a method to produce aqueous dispersions of tin-doped indium oxide (ITO) by refunctionalizing the nanocrystal surface, previously stripped of its native hydrophobic ligands, with a hydrophilic poly(acrylic acid) polymer featuring a low d. of methoxy-terminated poly(ethylene oxide) grafts (PAA-mPEO4). To determine conditions favoring the adsorption of PAA-mPEO4 on ITO, we varied the pH and chem. species present in the exchange solution The extent of polymer wrapping on the nanocrystal surface can be tuned as a function of the pH to prevent aggregation in solution and deposit uniform, smooth, and optical quality spray coated thin films. We demonstrate the utility of polymer-wrapped ITO nanocrystal thin films as an electrochromic material and achieve fast, stable, and reversible near-IR modulation without the need to remove the polymer after deposition provided that a wrapping d. of ~20% by mass is not exceeded.

Chemistry of Materials published new progress about Adsorption. 143-24-8 belongs to class ethers-buliding-blocks, name is 2,5,8,11,14-Pentaoxapentadecane, and the molecular formula is C10H22O5, Synthetic Route of 143-24-8.

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Wang, Hua’s team published research in Science China Materials in 2021-04-30 | CAS: 143-24-8

Science China Materials published new progress about Adsorption. 143-24-8 belongs to class ethers-buliding-blocks, name is 2,5,8,11,14-Pentaoxapentadecane, and the molecular formula is C10H22O5, Related Products of ethers-buliding-blocks.

Wang, Hua published the artcileGreatly promoted oxygen reduction reaction activity of solid catalysts by regulating the stability of superoxide in metal-O2 batteries, Related Products of ethers-buliding-blocks, the main research area is superoxide solid catalyst stability oxygen battery reduction reaction activity.

Oxygen reduction reactions (ORRs) with one- or two-electron-transfer pathways are the essential process for aprotic metal-oxygen batteries, in which the stability of superoxide intermediates/products (O2-, LiO2, NaO2, etc.) mainly dominates the ORR activity/stability and battery performance. However, little success in regulating the stability of the superoxides has been achieved due to their highly reactive characteristics. Herein, we identified and modulated the stability of superoxides by introducing anthraquinone derivatives as cocatalysts which functioned as superoxide trapper adsorbing the superoxides generated via surface-mediated ORR and then transferring them from the solid catalyst surface into electrolyte. Among the studied trappers, 1,4-difluoroanthraquinone (DFAQ) with electron-withdrawing groups showed the highest adsorption towards superoxides and could efficiently stabilize LiO2 in electrolyte, which greatly promoted the surface-mediated ORR rate and stability. This highlighted the magnitude of adsorption between the trapper and LiO2 on the ORR activity/stability. Using an aprotic Li-O2 battery as a model metal-O2 battery, the overall performance of the cell with DFAQ was substantially improved in terms of cell capacity, rate capability and cyclic stability. These results represent a significant advance in the understanding of ORR mechanisms and promoting the performance of metal-O2 batteries.

Science China Materials published new progress about Adsorption. 143-24-8 belongs to class ethers-buliding-blocks, name is 2,5,8,11,14-Pentaoxapentadecane, and the molecular formula is C10H22O5, Related Products of ethers-buliding-blocks.

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem