Dimmock, Jonathan R. et al. published their research in European Journal of Medicinal Chemistry in 1987 | CAS: 54916-28-8

1-(4-(4-Methoxyphenoxy)phenyl)ethanone (cas: 54916-28-8) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive. Electron-deficient reagents are also stabilized by ethers. For example, borane (BH3) is a useful reagent for making alcohols. Pure borane exists as its dimer, diborane (B2H6), a toxic gas that is inconvenient and hazardous to use. Borane forms stable complexes with ethers, however, and it is often supplied and used as its liquid complex with tetrahydrofuran (THF).HPLC of Formula: 54916-28-8

Evaluation of acrylophenones and related bis-Mannich bases against murine P388 leukemia was written by Dimmock, Jonathan R.;Patil, Shirish A.;Leek, Donald M.;Warrington, Robert C.;Fang, Wei D.. And the article was included in European Journal of Medicinal Chemistry in 1987.HPLC of Formula: 54916-28-8 This article mentions the following:

Mannich reaction of acetophenones with bases gave acrylophenones and bis-Mannich bases I and II (R = H, Me, Cl, OMe; R1 = H, Cl; R2 = H, OMe, Me, OPh, OC6H4OMe-4, OC6H4Me-4, OC6H4Cl-4; R3 = H, OMe, Me). I and II were tested against P388 lymphocyte leukemia in mice. I (R = R1 = R3 = H, R2 = OMe) shows potent activity against P388 cells in vitro. In the experiment, the researchers used many compounds, for example, 1-(4-(4-Methoxyphenoxy)phenyl)ethanone (cas: 54916-28-8HPLC of Formula: 54916-28-8).

1-(4-(4-Methoxyphenoxy)phenyl)ethanone (cas: 54916-28-8) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive. Electron-deficient reagents are also stabilized by ethers. For example, borane (BH3) is a useful reagent for making alcohols. Pure borane exists as its dimer, diborane (B2H6), a toxic gas that is inconvenient and hazardous to use. Borane forms stable complexes with ethers, however, and it is often supplied and used as its liquid complex with tetrahydrofuran (THF).HPLC of Formula: 54916-28-8

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Cao, Jing et al. published their research in Supramolecular Chemistry in 2011 | CAS: 66943-05-3

1,4,7,10-Tetraoxa-13-azacyclopentadecane (cas: 66943-05-3) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive. Electron-deficient reagents are also stabilized by ethers. For example, borane (BH3) is a useful reagent for making alcohols. Pure borane exists as its dimer, diborane (B2H6), a toxic gas that is inconvenient and hazardous to use. Borane forms stable complexes with ethers, however, and it is often supplied and used as its liquid complex with tetrahydrofuran (THF).Computed Properties of C10H21NO4

An ion-responsive fluorescent compound based on NO-photoisomerisation styryl derivative linked to monoaza-15-crown-5 was written by Cao, Jing;Feng, Jun Xiang;Wu, Yong Xiang;Pei, Xue Qun;Yan, Jiao Jiao;Liu, Yang;Qin, Wen Jie;Zhang, Xiao Bin. And the article was included in Supramolecular Chemistry in 2011.Computed Properties of C10H21NO4 This article mentions the following:

A novel 15-aza-5-crown ether linked to styryl chemosensory 13-(4-((9H-fluoren-9-ylidene)methyl)-2-nitrophenyl)-1,4,7,10-tetraoxa-13-azacyclopentadecane was designed and synthesized, it would not occur during photoisomerization under radiation of light but shows special capability of selectively recognizing for Sr2+. In the experiment, the researchers used many compounds, for example, 1,4,7,10-Tetraoxa-13-azacyclopentadecane (cas: 66943-05-3Computed Properties of C10H21NO4).

1,4,7,10-Tetraoxa-13-azacyclopentadecane (cas: 66943-05-3) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive. Electron-deficient reagents are also stabilized by ethers. For example, borane (BH3) is a useful reagent for making alcohols. Pure borane exists as its dimer, diborane (B2H6), a toxic gas that is inconvenient and hazardous to use. Borane forms stable complexes with ethers, however, and it is often supplied and used as its liquid complex with tetrahydrofuran (THF).Computed Properties of C10H21NO4

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Wang, Jianchun et al. published their research in Nature Chemistry in 2018 | CAS: 75581-11-2

4-Iodo-1-methoxy-2-methylbenzene (cas: 75581-11-2) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. But ether is more polar than alkenes. Autoxidation is the spontaneous oxidation of a compound in air. In the presence of oxygen, ethers slowly autoxidize to form hydroperoxides and dialkyl peroxides. If concentrated or heated, these peroxides may explode. To prevent such explosions, ethers should be obtained in small quantities, kept in tightly sealed containers, and used promptly.Name: 4-Iodo-1-methoxy-2-methylbenzene

Complementary site-selectivity in arene functionalization enabled by overcoming the ortho constraint in palladium/norbornene catalysis was written by Wang, Jianchun;Li, Renhe;Dong, Zhe;Liu, Peng;Dong, Guangbin. And the article was included in Nature Chemistry in 2018.Name: 4-Iodo-1-methoxy-2-methylbenzene This article mentions the following:

Achieving site-selectivity in arene functionalization that is complementary to the site-selectivity from electrophilic aromatic substitution reactions has been a long-standing quest in organic synthesis. Palladium/norbornene cooperative catalysis potentially offers a unique approach to this problem, but its use has been hampered by the ortho constraint, which is the requirement of an ortho substituent for mono ortho functionalization of haloarenes. Here, we show that such a challenge could be addressed using a new class of bridgehead-modified norbornenes, thereby enabling a broadly useful strategy for arene functionalization with complementary site-selectivity. A range of ortho-unsubstituted aryl iodides, previously problematic substrates, can now be employed to provide mono ortho-functionalized products effectively. This method is applicable for late-stage functionalization of complex bioactive mols. at positions that are difficult to reach by conventional approaches. In the experiment, the researchers used many compounds, for example, 4-Iodo-1-methoxy-2-methylbenzene (cas: 75581-11-2Name: 4-Iodo-1-methoxy-2-methylbenzene).

4-Iodo-1-methoxy-2-methylbenzene (cas: 75581-11-2) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. But ether is more polar than alkenes. Autoxidation is the spontaneous oxidation of a compound in air. In the presence of oxygen, ethers slowly autoxidize to form hydroperoxides and dialkyl peroxides. If concentrated or heated, these peroxides may explode. To prevent such explosions, ethers should be obtained in small quantities, kept in tightly sealed containers, and used promptly.Name: 4-Iodo-1-methoxy-2-methylbenzene

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Kosenko, N. N. et al. published their research in Zhurnal Prikladnoi Khimii (Sankt-Peterburg, Russian Federation) in 1968 | CAS: 20324-33-8

1-((1-((1-Methoxypropan-2-yl)oxy)propan-2-yl)oxy)propan-2-ol (cas: 20324-33-8) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. But on the other hand, ethers undergo cleavage by reaction with acids. At room temperature, ethers are pleasant-smelling colourless liquids. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil.Product Details of 20324-33-8

Gas-liquid chromatographic analysis of the OPSM flotation agent was written by Kosenko, N. N.;Baranova, G. F.;Gurvich, S. M.. And the article was included in Zhurnal Prikladnoi Khimii (Sankt-Peterburg, Russian Federation) in 1968.Product Details of 20324-33-8 This article mentions the following:

OPSM (I) flotation agent is manufactured by condensation of MeOH with propylene oxide. Me ethers of mono-, di-, tri-, tetra-, and pentapropylene glycol present in crude I were determined by gas chromatog. at 210° in 1-m. × 4-mm. column filled with Teflon containing 5% E-301 elastomer, with 1 cc. H/sec. as carrier gas. The sensitivity of the method is 0.1%, and the relative error is <10%. In the experiment, the researchers used many compounds, for example, 1-((1-((1-Methoxypropan-2-yl)oxy)propan-2-yl)oxy)propan-2-ol (cas: 20324-33-8Product Details of 20324-33-8).

1-((1-((1-Methoxypropan-2-yl)oxy)propan-2-yl)oxy)propan-2-ol (cas: 20324-33-8) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. But on the other hand, ethers undergo cleavage by reaction with acids. At room temperature, ethers are pleasant-smelling colourless liquids. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil.Product Details of 20324-33-8

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Zhu, Yanpeng et al. published their research in Journal of the American Chemical Society in 2018 | CAS: 365564-07-4

2-(3,5-Dimethoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (cas: 365564-07-4) belongs to ethers. The oxygen atom in ethers are more electronegative than carbon, thus the hydrogens which are alpha to the ethers are more acidic than the simple hydrocarbons. Ethyl ether is an excellent solvent for extractions and for a wide variety of chemical reactions. It is also used as a volatile starting fluid for diesel engines and gasoline engines in cold weather. Dimethyl ether is used as a spray propellant and refrigerant. Methyl t-butyl ether (MTBE) is a gasoline additive that boosts the octane number and reduces the amount of nitrogen-oxide pollutants in the exhaust. The ethers of ethylene glycol are used as solvents and plasticizers.Quality Control of 2-(3,5-Dimethoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

Synthesis and Characterization of Hexapole [7]Helicene, A Circularly Twisted Chiral Nanographene was written by Zhu, Yanpeng;Xia, Zeming;Cai, Zeying;Yuan, Ziyong;Jiang, Nianqiang;Li, Tao;Wang, Yonggen;Guo, Xiaoyu;Li, Zhihao;Ma, Shuang;Zhong, Dingyong;Li, Yang;Wang, Jiaobing. And the article was included in Journal of the American Chemical Society in 2018.Quality Control of 2-(3,5-Dimethoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane This article mentions the following:

The synthesis and characterization of two hexapole [7]helicenes (H7Hs) is reported. Single crystal X-ray diffraction unambiguously confirms the mol. structure. H7H absorbs light, with distinct Cotton effect, from UV to the near-IR (λmax = 618 nm). Cyclic voltammetry reveals nine reversible redox states, consecutively from -2 to +6. These chiroptical and electronic properties of H7H are inaccessible from helicene’s small homologues. In the experiment, the researchers used many compounds, for example, 2-(3,5-Dimethoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (cas: 365564-07-4Quality Control of 2-(3,5-Dimethoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane).

2-(3,5-Dimethoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (cas: 365564-07-4) belongs to ethers. The oxygen atom in ethers are more electronegative than carbon, thus the hydrogens which are alpha to the ethers are more acidic than the simple hydrocarbons. Ethyl ether is an excellent solvent for extractions and for a wide variety of chemical reactions. It is also used as a volatile starting fluid for diesel engines and gasoline engines in cold weather. Dimethyl ether is used as a spray propellant and refrigerant. Methyl t-butyl ether (MTBE) is a gasoline additive that boosts the octane number and reduces the amount of nitrogen-oxide pollutants in the exhaust. The ethers of ethylene glycol are used as solvents and plasticizers.Quality Control of 2-(3,5-Dimethoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Sweilam, Mona N. et al. published their research in Biosensors & Bioelectronics in 2020 | CAS: 111-77-3

2-(2-Methoxyethoxy)ethanol (cas: 111-77-3) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. But on the other hand, ethers undergo cleavage by reaction with acids. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides.Product Details of 111-77-3

Textile-based non-invasive lithium drug monitoring: A proof-of-concept study for wearable sensing was written by Sweilam, Mona N.;Cordery, Sarah F.;Totti, Stella;Velliou, Eirini G.;Campagnolo, Paola;Varcoe, John R.;Delgado-Charro, M. Begona;Crean, Carol. And the article was included in Biosensors & Bioelectronics in 2020.Product Details of 111-77-3 This article mentions the following:

Flexible wearable chem. sensors are emerging tools which target diagnosis and monitoring of medical conditions. One of the potential applications of wearable chem. sensors is therapeutic drug monitoring for drugs that have a narrow therapeutic range such as lithium. We have investigated the possibility of developing a fiber-based device for non-invasive lithium drug monitoring in interstitial fluid. A flexible cotton-based lithium sensor was coupled with a carbon fiber-based reference electrode to obtain a potentiometric device. In vitro reverse iontophoresis experiments were performed to extract Li+ from under porcine skin by applying a c.d. of 0.4 mA cm-2 via two electrodes. Carbon fiber-based reverse iontophoresis electrodes were fabricated and used instead of a conventional silver wire-based version and comparable results were obtained. The fiber-based Li+ sensor and reference electrodes were capable of determining the Li+ concentration in samples collected via reverse iontophoresis and the results compared well to those obtained by ion chromatog. Addnl., biocompatibility of the materials used have been tested. Promising results were obtained which confirm the possibility of monitoring lithium in interstitial fluid using a wearable sensor. In the experiment, the researchers used many compounds, for example, 2-(2-Methoxyethoxy)ethanol (cas: 111-77-3Product Details of 111-77-3).

2-(2-Methoxyethoxy)ethanol (cas: 111-77-3) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. But on the other hand, ethers undergo cleavage by reaction with acids. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides.Product Details of 111-77-3

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Chou, Wei-Ling et al. published their research in Frontiers in Pharmacology in 2019 | CAS: 605-94-7

2,3-Dimethoxy-5-methylcyclohexa-2,5-diene-1,4-dione (cas: 605-94-7) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. Ethers can form hydrogen bonds with other molecules (alcohols, amines, etc.) that have O―H or N―H bonds. The ability to form hydrogen bonds with other compounds makes ethers particularly good solvents for a wide variety of organic compounds and a surprisingly large number of inorganic compounds.Recommanded Product: 605-94-7

Coenzyme Q0 from Antrodia cinnamomea exhibits drug-resistant bacteria eradication and keratinocyte inflammation mitigation to ameliorate infected atopic dermatitis in mouse was written by Chou, Wei-Ling;Lee, Tzong-Huei;Huang, Tse-Hung;Wang, Pei-Wen;Chen, Ya-Ping;Chen, Chin-Chang;Chang, Zi-Yu;Fang, Jia-You;Yang, Shih-Chun. And the article was included in Frontiers in Pharmacology in 2019.Recommanded Product: 605-94-7 This article mentions the following:

Atopic dermatitis (AD) is an inflammatory skin disease that is usually accompanied by Staphylococcus aureus infection due to cutaneous barrier-function damage. Benzenoid compounds from Antrodia cinnamomea are known to exhibit antibacterial and antiinflammatory activities. This study sought to investigate the potential of benzenoids for treating bacteria-infected AD. The compounds were screened against methicillin-resistant S. aureus (MRSA). Coenzyme Q0 (CoQ0), a key ingredient in A. cinnamomea, showed the strongest MRSA growth inhibition. We further tested the inhibitory effect of CoQ0 on planktonic and biofilm MRSA. The work was also performed to explore the potential effectiveness of CoQ0 on AD using activated keratinocytes and in vivo exptl. AD mice as the models. The min. inhibitory concentration (MIC) and min. bactericidal concentration (MBC) of CoQ0 against MRSA were 7.81μg/mL. CoQ0 was found to eradicate biofilm MRSA efficiently and reduce the biofilm thickness. CoQ0 killed MRSA by inhibiting DNA polymerase and topoisomerases. A proteomic assay showed that CoQ0 also reduced the ribosomal proteins. In the anti-inflammation study, CoQ0 was found to downregulate the expression of interleukin (IL)-6, chemokine (C-C motif) ligand (CCL)5, and CCL17 in HaCaT cells. CoQ0 at 0.5μg/mL could recover the filaggrin decreased by HaCaT activation to the normal control. We established a bacteria-infected AD-like model in mice using ovalbumin (OVA) and topically applied MRSA. Topical CoQ0 delivery lessened the MRSA presence in the AD-like lesions by >90%. The erythema, barrier function, and epidermal thickness of the AD-like wounds were improved by CoQ0 through the reduction of IL-1β, IL-4, IL-6, IL-10, interferon (IFN)-γ, and by neutrophil infiltration in the lesional skin. CoQ0 is therefore regarded as effective in mitigating AD symptoms associated with bacterial load. In the experiment, the researchers used many compounds, for example, 2,3-Dimethoxy-5-methylcyclohexa-2,5-diene-1,4-dione (cas: 605-94-7Recommanded Product: 605-94-7).

2,3-Dimethoxy-5-methylcyclohexa-2,5-diene-1,4-dione (cas: 605-94-7) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. Ethers can form hydrogen bonds with other molecules (alcohols, amines, etc.) that have O―H or N―H bonds. The ability to form hydrogen bonds with other compounds makes ethers particularly good solvents for a wide variety of organic compounds and a surprisingly large number of inorganic compounds.Recommanded Product: 605-94-7

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Amoros, I. et al. published their research in Water Science and Technology in 2000 | CAS: 5367-32-8

3-Methyl-4-nitroanisole (cas: 5367-32-8) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. But ether is more polar than alkenes. Electron-deficient reagents are also stabilized by ethers. For example, borane (BH3) is a useful reagent for making alcohols. Pure borane exists as its dimer, diborane (B2H6), a toxic gas that is inconvenient and hazardous to use. Borane forms stable complexes with ethers, however, and it is often supplied and used as its liquid complex with tetrahydrofuran (THF).Synthetic Route of C8H9NO3

An assessment of the toxicity of some pesticides and their metabolites affecting a natural aquatic environment using the Microtox system was written by Amoros, I.;Connon, R.;Garelick, H.;Alonso, J. L.;Carrasco, J. M.. And the article was included in Water Science and Technology in 2000.Synthetic Route of C8H9NO3 This article mentions the following:

The conservation and preservation of aquatic ecosystems is of utmost importance due to the high diversity and d. of species and their complex food network. The evaluation of the potential adverse environmental impact caused by pesticides entering water bodies is an important parameter in aquatic toxicity. The toxicity of the insecticide, fenitrothion and two of its metabolites, 3-methyl-4-nitrophenol and 3-methyl-4-nitroanisole, and of the herbicides thiobencarb and molinate, commonly used in rice fields in Valencia near the protected area of lake Albufera, was tested by the Microtox system. The 15 min EC50 values obtained with the marine luminescent bacterium Vibrio fischeri showed that the thiobencarb was the most toxic of the 3 tested pesticides with an EC50 value of 0.03 mg/L. The EC50 values of the first 2 steps of the fenitrothion hydrolysis indicated that while the first metabolite, 3-methyl-4-nitrophenol, was as toxic as its parent compound, a decreased toxicity was observed for the second metabolite, 3-methyl-4-nitroanisole. To analyze the toxic effects of pesticides in complex mixtures the EC50 values of fenitrothion, molinate, and thiobencarb as pure substances and their mixtures were compared. The impact of the pesticides in the natural ecosystem was also studied and a protective effect of lake water was observed In the experiment, the researchers used many compounds, for example, 3-Methyl-4-nitroanisole (cas: 5367-32-8Synthetic Route of C8H9NO3).

3-Methyl-4-nitroanisole (cas: 5367-32-8) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. But ether is more polar than alkenes. Electron-deficient reagents are also stabilized by ethers. For example, borane (BH3) is a useful reagent for making alcohols. Pure borane exists as its dimer, diborane (B2H6), a toxic gas that is inconvenient and hazardous to use. Borane forms stable complexes with ethers, however, and it is often supplied and used as its liquid complex with tetrahydrofuran (THF).Synthetic Route of C8H9NO3

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Mori, Hisashi et al. published their research in Bioorganic & Medicinal Chemistry Letters in 2014 | CAS: 1877-75-4

2-(4-Methoxyphenoxy)acetic acid (cas: 1877-75-4) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil. Autoxidation is the spontaneous oxidation of a compound in air. In the presence of oxygen, ethers slowly autoxidize to form hydroperoxides and dialkyl peroxides. If concentrated or heated, these peroxides may explode. To prevent such explosions, ethers should be obtained in small quantities, kept in tightly sealed containers, and used promptly.Recommanded Product: 2-(4-Methoxyphenoxy)acetic acid

In silico and pharmacological screenings identify novel serine racemase inhibitors was written by Mori, Hisashi;Wada, Ryogo;Li, Jie;Ishimoto, Tetsuya;Mizuguchi, Mineyuki;Obita, Takayuki;Gouda, Hiroaki;Hirono, Shuichi;Toyooka, Naoki. And the article was included in Bioorganic & Medicinal Chemistry Letters in 2014.Recommanded Product: 2-(4-Methoxyphenoxy)acetic acid This article mentions the following:

D-Serine is a coagonist of the N-methyl-D-aspartate (NMDA)-type glutamate receptor and its biosynthesis is catalyzed by serine racemase (SR). The overactivation of the NMDA receptor has been implicated in the development of neurodegenerative diseases, strokes, and epileptic seizures, thus, the inhibitors of SR have potential against these pathol. states. Here, we have developed novel inhibitors of SR by in silico screening and in vitro enzyme assay. The newly developed inhibitors have lower IC50 value comparing with that of malonate, one of the standard SR inhibitor. The structural features of novel inhibitors suggest the importance of central amide structure having a phenoxy substituent in their structure for the SR inhibitory activity. The present findings suggest the importance and rational development of new drugs for diseases of NMDAR overactivation. In the experiment, the researchers used many compounds, for example, 2-(4-Methoxyphenoxy)acetic acid (cas: 1877-75-4Recommanded Product: 2-(4-Methoxyphenoxy)acetic acid).

2-(4-Methoxyphenoxy)acetic acid (cas: 1877-75-4) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil. Autoxidation is the spontaneous oxidation of a compound in air. In the presence of oxygen, ethers slowly autoxidize to form hydroperoxides and dialkyl peroxides. If concentrated or heated, these peroxides may explode. To prevent such explosions, ethers should be obtained in small quantities, kept in tightly sealed containers, and used promptly.Recommanded Product: 2-(4-Methoxyphenoxy)acetic acid

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Yao, Qiuli et al. published their research in European Journal of Organic Chemistry in 2019 | CAS: 75581-11-2

4-Iodo-1-methoxy-2-methylbenzene (cas: 75581-11-2) belongs to ethers. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides. At room temperature, ethers are pleasant-smelling colourless liquids. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil.SDS of cas: 75581-11-2

Metal-Free Photoinduced Transformation of Aryl Halides and Diketones into Aryl Ketones was written by Yao, Qiuli;Liu, Wenbo;Liu, Peng;Ren, Linjing;Fang, Xuehong;Li, Chao-Jun. And the article was included in European Journal of Organic Chemistry in 2019.SDS of cas: 75581-11-2 This article mentions the following:

The acylation of aryl halides to prepare aryl ketones without metal catalyst represents an important yet challenging topic towards more sustainable ketone synthesis. A simple and efficient metal-free protocol for the acylation of aryl halides with diketone under the irradiation of light utilizing N-methylpiperidine as base under an air atm. is described. This reaction can tolerate a wide range of functional groups and the corresponding ketones can be obtained in modest to good yields. In the experiment, the researchers used many compounds, for example, 4-Iodo-1-methoxy-2-methylbenzene (cas: 75581-11-2SDS of cas: 75581-11-2).

4-Iodo-1-methoxy-2-methylbenzene (cas: 75581-11-2) belongs to ethers. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides. At room temperature, ethers are pleasant-smelling colourless liquids. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil.SDS of cas: 75581-11-2

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem