Wang, Jianchun et al. published their research in Nature Chemistry in 2018 | CAS: 75581-11-2

4-Iodo-1-methoxy-2-methylbenzene (cas: 75581-11-2) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. But ether is more polar than alkenes. Autoxidation is the spontaneous oxidation of a compound in air. In the presence of oxygen, ethers slowly autoxidize to form hydroperoxides and dialkyl peroxides. If concentrated or heated, these peroxides may explode. To prevent such explosions, ethers should be obtained in small quantities, kept in tightly sealed containers, and used promptly.Name: 4-Iodo-1-methoxy-2-methylbenzene

Complementary site-selectivity in arene functionalization enabled by overcoming the ortho constraint in palladium/norbornene catalysis was written by Wang, Jianchun;Li, Renhe;Dong, Zhe;Liu, Peng;Dong, Guangbin. And the article was included in Nature Chemistry in 2018.Name: 4-Iodo-1-methoxy-2-methylbenzene This article mentions the following:

Achieving site-selectivity in arene functionalization that is complementary to the site-selectivity from electrophilic aromatic substitution reactions has been a long-standing quest in organic synthesis. Palladium/norbornene cooperative catalysis potentially offers a unique approach to this problem, but its use has been hampered by the ortho constraint, which is the requirement of an ortho substituent for mono ortho functionalization of haloarenes. Here, we show that such a challenge could be addressed using a new class of bridgehead-modified norbornenes, thereby enabling a broadly useful strategy for arene functionalization with complementary site-selectivity. A range of ortho-unsubstituted aryl iodides, previously problematic substrates, can now be employed to provide mono ortho-functionalized products effectively. This method is applicable for late-stage functionalization of complex bioactive mols. at positions that are difficult to reach by conventional approaches. In the experiment, the researchers used many compounds, for example, 4-Iodo-1-methoxy-2-methylbenzene (cas: 75581-11-2Name: 4-Iodo-1-methoxy-2-methylbenzene).

4-Iodo-1-methoxy-2-methylbenzene (cas: 75581-11-2) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. But ether is more polar than alkenes. Autoxidation is the spontaneous oxidation of a compound in air. In the presence of oxygen, ethers slowly autoxidize to form hydroperoxides and dialkyl peroxides. If concentrated or heated, these peroxides may explode. To prevent such explosions, ethers should be obtained in small quantities, kept in tightly sealed containers, and used promptly.Name: 4-Iodo-1-methoxy-2-methylbenzene

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Cao, Jing et al. published their research in Supramolecular Chemistry in 2011 | CAS: 66943-05-3

1,4,7,10-Tetraoxa-13-azacyclopentadecane (cas: 66943-05-3) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive. Electron-deficient reagents are also stabilized by ethers. For example, borane (BH3) is a useful reagent for making alcohols. Pure borane exists as its dimer, diborane (B2H6), a toxic gas that is inconvenient and hazardous to use. Borane forms stable complexes with ethers, however, and it is often supplied and used as its liquid complex with tetrahydrofuran (THF).Computed Properties of C10H21NO4

An ion-responsive fluorescent compound based on NO-photoisomerisation styryl derivative linked to monoaza-15-crown-5 was written by Cao, Jing;Feng, Jun Xiang;Wu, Yong Xiang;Pei, Xue Qun;Yan, Jiao Jiao;Liu, Yang;Qin, Wen Jie;Zhang, Xiao Bin. And the article was included in Supramolecular Chemistry in 2011.Computed Properties of C10H21NO4 This article mentions the following:

A novel 15-aza-5-crown ether linked to styryl chemosensory 13-(4-((9H-fluoren-9-ylidene)methyl)-2-nitrophenyl)-1,4,7,10-tetraoxa-13-azacyclopentadecane was designed and synthesized, it would not occur during photoisomerization under radiation of light but shows special capability of selectively recognizing for Sr2+. In the experiment, the researchers used many compounds, for example, 1,4,7,10-Tetraoxa-13-azacyclopentadecane (cas: 66943-05-3Computed Properties of C10H21NO4).

1,4,7,10-Tetraoxa-13-azacyclopentadecane (cas: 66943-05-3) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive. Electron-deficient reagents are also stabilized by ethers. For example, borane (BH3) is a useful reagent for making alcohols. Pure borane exists as its dimer, diborane (B2H6), a toxic gas that is inconvenient and hazardous to use. Borane forms stable complexes with ethers, however, and it is often supplied and used as its liquid complex with tetrahydrofuran (THF).Computed Properties of C10H21NO4

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Dimmock, Jonathan R. et al. published their research in European Journal of Medicinal Chemistry in 1987 | CAS: 54916-28-8

1-(4-(4-Methoxyphenoxy)phenyl)ethanone (cas: 54916-28-8) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive. Electron-deficient reagents are also stabilized by ethers. For example, borane (BH3) is a useful reagent for making alcohols. Pure borane exists as its dimer, diborane (B2H6), a toxic gas that is inconvenient and hazardous to use. Borane forms stable complexes with ethers, however, and it is often supplied and used as its liquid complex with tetrahydrofuran (THF).HPLC of Formula: 54916-28-8

Evaluation of acrylophenones and related bis-Mannich bases against murine P388 leukemia was written by Dimmock, Jonathan R.;Patil, Shirish A.;Leek, Donald M.;Warrington, Robert C.;Fang, Wei D.. And the article was included in European Journal of Medicinal Chemistry in 1987.HPLC of Formula: 54916-28-8 This article mentions the following:

Mannich reaction of acetophenones with bases gave acrylophenones and bis-Mannich bases I and II (R = H, Me, Cl, OMe; R1 = H, Cl; R2 = H, OMe, Me, OPh, OC6H4OMe-4, OC6H4Me-4, OC6H4Cl-4; R3 = H, OMe, Me). I and II were tested against P388 lymphocyte leukemia in mice. I (R = R1 = R3 = H, R2 = OMe) shows potent activity against P388 cells in vitro. In the experiment, the researchers used many compounds, for example, 1-(4-(4-Methoxyphenoxy)phenyl)ethanone (cas: 54916-28-8HPLC of Formula: 54916-28-8).

1-(4-(4-Methoxyphenoxy)phenyl)ethanone (cas: 54916-28-8) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive. Electron-deficient reagents are also stabilized by ethers. For example, borane (BH3) is a useful reagent for making alcohols. Pure borane exists as its dimer, diborane (B2H6), a toxic gas that is inconvenient and hazardous to use. Borane forms stable complexes with ethers, however, and it is often supplied and used as its liquid complex with tetrahydrofuran (THF).HPLC of Formula: 54916-28-8

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Sahoo, Manoj K. et al. published their research in ChemistrySelect in 2017 | CAS: 56619-93-3

N-(3-Methoxyphenyl)pivalamide (cas: 56619-93-3) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. But on the other hand, ethers undergo cleavage by reaction with acids. Ethers feature bent C闂佺偨鍎茶ぐ濠囨煃閵夛箑鐤?linkages. In dimethyl ether, the bond angle is 111闁?and C闂佺偨鍎茶ぐ?distances are 141 pm. The barrier to rotation about the C闂佺偨鍎茶ぐ?bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.Reference of 56619-93-3

Room-Temperature Direct Arylation of Anilides under External Oxidant-Free Conditions Using CO2-Derived Dimethyl Carbonate (DMC) as a ‘Green’ Solvent was written by Sahoo, Manoj K.;Rana, Jagannath;Subaramanian, Murugan;Balaraman, Ekambaram. And the article was included in ChemistrySelect in 2017.Reference of 56619-93-3 This article mentions the following:

Here, an efficient catalytic protocol for direct C-H bond arylation of anilides under base- and external oxidant-free conditions is reported. This reaction proceeds readily at room temperature using CO2-derived di-Me carbonate (DMC) as a ‘green’ solvent under visible-light dual catalysis. Later, application of this strategy for the gram-scale synthesis of Boscalid has been successfully shown. An unprecedented unsym. bis-arylation of anilides is also demonstrated under mild, redox-neutral conditions. In the experiment, the researchers used many compounds, for example, N-(3-Methoxyphenyl)pivalamide (cas: 56619-93-3Reference of 56619-93-3).

N-(3-Methoxyphenyl)pivalamide (cas: 56619-93-3) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. But on the other hand, ethers undergo cleavage by reaction with acids. Ethers feature bent C闂佺偨鍎茶ぐ濠囨煃閵夛箑鐤?linkages. In dimethyl ether, the bond angle is 111闁?and C闂佺偨鍎茶ぐ?distances are 141 pm. The barrier to rotation about the C闂佺偨鍎茶ぐ?bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.Reference of 56619-93-3

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Domi, Yasuhiro et al. published their research in Journal of the Electrochemical Society in 2016 | CAS: 66943-05-3

1,4,7,10-Tetraoxa-13-azacyclopentadecane (cas: 66943-05-3) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. But ether is more polar than alkenes. Ethers feature bent C闂佺偨鍎茶ぐ濠囨煃閵夛箑鐤?linkages. In dimethyl ether, the bond angle is 111闁?and C闂佺偨鍎茶ぐ?distances are 141 pm. The barrier to rotation about the C闂佺偨鍎茶ぐ?bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.Name: 1,4,7,10-Tetraoxa-13-azacyclopentadecane

Intercalation/De-Intercalation Reactions of Lithium Ion at Graphite in Electrolyte Solutions Containing 3D-Transition-Metal Ions and Cyclic Ethers was written by Domi, Yasuhiro;Doi, Takayuki;Ochida, Manabu;Yamanaka, Toshiro;Abe, Takeshi;Ogumi, Zempachi. And the article was included in Journal of the Electrochemical Society in 2016.Name: 1,4,7,10-Tetraoxa-13-azacyclopentadecane This article mentions the following:

The effects of 3d-transition-metal ions in the electrolyte on the intercalation/de-intercalation reactions of Li+ at graphite neg.-electrodes were investigated. The edge plane of highly oriented pyrolytic graphite (HOPG) was used as a model electrode, and electrochem. properties were investigated by cyclic voltammetry and electrochem. impedance spectroscopy. A drastic decrease in redox current due to intercalation/de-intercalation reactions of Li+ was observed in electrolyte solutions containing Fe, Co, Ni, and Mn ions. In addition, interfacial resistance between the edge plane HOPG electrode and the electrolyte increased significantly. The effects of cyclic ethers, such as crown ether, aza crown ether, and cryptand, as electrolyte additives were applied to suppress the degradation of graphite neg.-electrodes. As a result, specific cyclic ethers greatly suppressed the degradation of edge plane HOPG neg.-electrodes in electrolyte solutions containing the above transition-metal ions. In the experiment, the researchers used many compounds, for example, 1,4,7,10-Tetraoxa-13-azacyclopentadecane (cas: 66943-05-3Name: 1,4,7,10-Tetraoxa-13-azacyclopentadecane).

1,4,7,10-Tetraoxa-13-azacyclopentadecane (cas: 66943-05-3) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. But ether is more polar than alkenes. Ethers feature bent C闂佺偨鍎茶ぐ濠囨煃閵夛箑鐤?linkages. In dimethyl ether, the bond angle is 111闁?and C闂佺偨鍎茶ぐ?distances are 141 pm. The barrier to rotation about the C闂佺偨鍎茶ぐ?bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.Name: 1,4,7,10-Tetraoxa-13-azacyclopentadecane

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Bos, Pieter H. et al. published their research in Cell Chemical Biology in 2019 | CAS: 156635-90-4

(4-((4-Methoxybenzyl)oxy)phenyl)boronic acid (cas: 156635-90-4) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. But on the other hand, ethers undergo cleavage by reaction with acids. Autoxidation is the spontaneous oxidation of a compound in air. In the presence of oxygen, ethers slowly autoxidize to form hydroperoxides and dialkyl peroxides. If concentrated or heated, these peroxides may explode. To prevent such explosions, ethers should be obtained in small quantities, kept in tightly sealed containers, and used promptly.Safety of (4-((4-Methoxybenzyl)oxy)phenyl)boronic acid

Development of MAP4 Kinase Inhibitors as Motor Neuron-Protecting Agents was written by Bos, Pieter H.;Lowry, Emily R.;Costa, Jonathon;Thams, Sebastian;Garcia-Diaz, Alejandro;Zask, Arie;Wichterle, Hynek;Stockwell, Brent R.. And the article was included in Cell Chemical Biology in 2019.Safety of (4-((4-Methoxybenzyl)oxy)phenyl)boronic acid This article mentions the following:

Disease-causing mutations in many neurodegenerative disorders lead to proteinopathies that trigger endoplasmic reticulum (ER) stress. However, few therapeutic options exist for patients with these diseases. Using an in vitro screening platform to identify compounds that protect human motor neurons from ER stress-mediated degeneration, we discovered that compounds targeting the mitogen-activated protein kinase kinase kinase kinase (MAP4K) family are neuroprotective. The kinase inhibitor URMC-099 (compound 1) stood out as a promising lead compound for further optimization. We coupled structure-based compound design with functional activity testing in neurons subjected to ER stress to develop a series of analogs with improved MAP4K inhibition and concomitant increases in potency and efficacy. Further structural modifications were performed to enhance the pharmacokinetic profiles of the compound 1 derivatives Prostetin/12k emerged as an exceptionally potent, metabolically stable, and blood-brain barrier-penetrant compound that is well suited for future testing in animal models of neurodegeneration. In the experiment, the researchers used many compounds, for example, (4-((4-Methoxybenzyl)oxy)phenyl)boronic acid (cas: 156635-90-4Safety of (4-((4-Methoxybenzyl)oxy)phenyl)boronic acid).

(4-((4-Methoxybenzyl)oxy)phenyl)boronic acid (cas: 156635-90-4) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. But on the other hand, ethers undergo cleavage by reaction with acids. Autoxidation is the spontaneous oxidation of a compound in air. In the presence of oxygen, ethers slowly autoxidize to form hydroperoxides and dialkyl peroxides. If concentrated or heated, these peroxides may explode. To prevent such explosions, ethers should be obtained in small quantities, kept in tightly sealed containers, and used promptly.Safety of (4-((4-Methoxybenzyl)oxy)phenyl)boronic acid

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Kinens, A. et al. published their research in Chemistry of Heterocyclic Compounds (New York, NY, United States) in 2015 | CAS: 56619-93-3

N-(3-Methoxyphenyl)pivalamide (cas: 56619-93-3) belongs to ethers. The oxygen atom in ethers are more electronegative than carbon, thus the hydrogens which are alpha to the ethers are more acidic than the simple hydrocarbons. Autoxidation is the spontaneous oxidation of a compound in air. In the presence of oxygen, ethers slowly autoxidize to form hydroperoxides and dialkyl peroxides. If concentrated or heated, these peroxides may explode. To prevent such explosions, ethers should be obtained in small quantities, kept in tightly sealed containers, and used promptly.COA of Formula: C12H17NO2

Synthesis of 9-Phenylacridines via Ortho-Lithiation-Cyclization Sequence* was written by Kinens, A.;Kalnins, T.;Suna, E.. And the article was included in Chemistry of Heterocyclic Compounds (New York, NY, United States) in 2015.COA of Formula: C12H17NO2 This article mentions the following:

Herein, we describe a previously unreported formation of acridines from triarylcarbinols under acidic conditions. Thus, treatment of tertiary alcs. with concentrate aqueous HCl in glacial AcOH at 90闁?provided 9-phenylacridines in 91-92% yield. The starting tertiary alcs. were prepared by double addition of ortho-lithiated pivaloyl anilines to benzoyl chloride in 76 and 68% yield, resp. Overall, the two-step ortho-lithiation cyclization sequence constitutes a convenient approach to 9-phenylacridines. In the experiment, the researchers used many compounds, for example, N-(3-Methoxyphenyl)pivalamide (cas: 56619-93-3COA of Formula: C12H17NO2).

N-(3-Methoxyphenyl)pivalamide (cas: 56619-93-3) belongs to ethers. The oxygen atom in ethers are more electronegative than carbon, thus the hydrogens which are alpha to the ethers are more acidic than the simple hydrocarbons. Autoxidation is the spontaneous oxidation of a compound in air. In the presence of oxygen, ethers slowly autoxidize to form hydroperoxides and dialkyl peroxides. If concentrated or heated, these peroxides may explode. To prevent such explosions, ethers should be obtained in small quantities, kept in tightly sealed containers, and used promptly.COA of Formula: C12H17NO2

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Serna, Manuel et al. published their research in Pharmacological Reports in 2015 | CAS: 6972-61-8

3-(2,4-Dimethoxyphenyl)acrylic acid (cas: 6972-61-8) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive. Electron-deficient reagents are also stabilized by ethers. For example, borane (BH3) is a useful reagent for making alcohols. Pure borane exists as its dimer, diborane (B2H6), a toxic gas that is inconvenient and hazardous to use. Borane forms stable complexes with ethers, however, and it is often supplied and used as its liquid complex with tetrahydrofuran (THF).Application of 6972-61-8

Hypocholesterolemic and choleretic effects of three dimethoxycinnamic acids in relation to 2,4,5-trimethoxycinnamic acid in rats fed with a high-cholesterol/cholate diet was written by Serna, Manuel;Wong-Baeza, Carlos;Santiago-Hernandez, Juan-Carlos;Baeza, Isabel;Wong, Carlos. And the article was included in Pharmacological Reports in 2015.Application of 6972-61-8 This article mentions the following:

2,4,5-Trimethoxycinnamic acid (2,4,5-TMC) is the major and non-toxic metabolite of 濞?asarone, which retains hypocholesterolemic and choleretic activities. We compared the activities of 2,4,5-TMC with those of 2,4-dimethoxycinnamic acid (2,4-DMC), 3,4-DMC and 3,5-DMC, to understand the role of the methoxyls on carbons 2, 4 and 5 on the pharmacol. properties of these compounds The methoxycinnamic acids were administered to high-cholesterol/cholate-fed rats. We measured bile flow, and quantified bile acids, phospholipids and cholesterol in bile, and cholesterol and cholesterol-lipoproteins in serum. The inhibition of HMG-CoA reductase by the methoxycinnamic acids was evaluated in vitro. The four methoxycinnamic acids decreased serum cholesterol, without affecting the concentration of HDL-cholesterol. 2,4,5-TMC produced the highest decrease in LDL-cholesterol, 73.5%, which exceeds the range of statins (20-40%), and produced the highest inhibition of the activity of HMG-CoA reductase. 3,4-DMC produced the highest increase in bile flow, bile acids and phospholipids concentrations, and reduction in bile cholesterol, which led to a decrease in the biliary cholesterol saturation index.2,4,5-TMC (which has three methoxyls) had the highest hypocholesterolemic activity, while 3,4-DMC, which lacks the methoxyl in carbon 2 but conserves the two other methoxyls in an adjacent position, had the highest choleretic activity and a probable cholelitholytic activity. In methoxycinnamic acids with two methoxyls in non-adjacent positions (2,4-DMC and 3,5-DMC), the hypocholesterolemic and choleretic activities were not as evident. 2,4,5-TMC and 3,4-DMC, which did not cause liver damage during the treatment period, should be further explored as a hypocholesterolemic and choleretic compounds in humans. In the experiment, the researchers used many compounds, for example, 3-(2,4-Dimethoxyphenyl)acrylic acid (cas: 6972-61-8Application of 6972-61-8).

3-(2,4-Dimethoxyphenyl)acrylic acid (cas: 6972-61-8) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive. Electron-deficient reagents are also stabilized by ethers. For example, borane (BH3) is a useful reagent for making alcohols. Pure borane exists as its dimer, diborane (B2H6), a toxic gas that is inconvenient and hazardous to use. Borane forms stable complexes with ethers, however, and it is often supplied and used as its liquid complex with tetrahydrofuran (THF).Application of 6972-61-8

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Castanet, Anne-Sophie et al. published their research in Tetrahedron Letters in 2002 | CAS: 75581-11-2

4-Iodo-1-methoxy-2-methylbenzene (cas: 75581-11-2) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. But on the other hand, ethers undergo cleavage by reaction with acids. Ethers feature bent C闂佺偨鍎茶ぐ濠囨煃閵夛箑鐤?linkages. In dimethyl ether, the bond angle is 111闁?and C闂佺偨鍎茶ぐ?distances are 141 pm. The barrier to rotation about the C闂佺偨鍎茶ぐ?bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.SDS of cas: 75581-11-2

Mild and regioselective iodination of electron-rich aromatics with N-iodosuccinimide and catalytic trifluoroacetic acid was written by Castanet, Anne-Sophie;Colobert, Francoise;Broutin, Pierre-Emmanuel. And the article was included in Tetrahedron Letters in 2002.SDS of cas: 75581-11-2 This article mentions the following:

A variety of aromatic compounds substituted with methoxy or Me groups were regioselectively iodinated with N-iodosuccinimide and catalytic HO2CCF3 with excellent yields under mild conditions and short reaction times. In the experiment, the researchers used many compounds, for example, 4-Iodo-1-methoxy-2-methylbenzene (cas: 75581-11-2SDS of cas: 75581-11-2).

4-Iodo-1-methoxy-2-methylbenzene (cas: 75581-11-2) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. But on the other hand, ethers undergo cleavage by reaction with acids. Ethers feature bent C闂佺偨鍎茶ぐ濠囨煃閵夛箑鐤?linkages. In dimethyl ether, the bond angle is 111闁?and C闂佺偨鍎茶ぐ?distances are 141 pm. The barrier to rotation about the C闂佺偨鍎茶ぐ?bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.SDS of cas: 75581-11-2

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Zhou, Bo et al. published their research in Advanced Synthesis & Catalysis in 2018 | CAS: 75581-11-2

4-Iodo-1-methoxy-2-methylbenzene (cas: 75581-11-2) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. Ethyl ether is an excellent solvent for extractions and for a wide variety of chemical reactions. It is also used as a volatile starting fluid for diesel engines and gasoline engines in cold weather. Dimethyl ether is used as a spray propellant and refrigerant. Methyl t-butyl ether (MTBE) is a gasoline additive that boosts the octane number and reduces the amount of nitrogen-oxide pollutants in the exhaust. The ethers of ethylene glycol are used as solvents and plasticizers.Recommanded Product: 75581-11-2

The Synthesis of Benzofulvenes through Palladium-Catalyzed Sequential Three-Component Reactions was written by Zhou, Bo;Wu, Zhuo;Qi, Weixin;Sun, Xueliang;Zhang, Yanghui. And the article was included in Advanced Synthesis & Catalysis in 2018.Recommanded Product: 75581-11-2 This article mentions the following:

An approach for the synthesis of benzofulvenes was developed through palladium-catalyzed sequential three-component reactions. The reactions likely involved C,C-palladacycles as the key intermediates. The palladacycles were generated through cascade reactions of aryl halides and alkynes, and then reacted with CH2Br2 to form benzofulvenes as the final products. In the experiment, the researchers used many compounds, for example, 4-Iodo-1-methoxy-2-methylbenzene (cas: 75581-11-2Recommanded Product: 75581-11-2).

4-Iodo-1-methoxy-2-methylbenzene (cas: 75581-11-2) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. Ethyl ether is an excellent solvent for extractions and for a wide variety of chemical reactions. It is also used as a volatile starting fluid for diesel engines and gasoline engines in cold weather. Dimethyl ether is used as a spray propellant and refrigerant. Methyl t-butyl ether (MTBE) is a gasoline additive that boosts the octane number and reduces the amount of nitrogen-oxide pollutants in the exhaust. The ethers of ethylene glycol are used as solvents and plasticizers.Recommanded Product: 75581-11-2

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem