Lin, Qiaowei et al. published their research in Physical Chemistry Chemical Physics in 2021 | CAS: 112-49-2

2,5,8,11-Tetraoxadodecane (cas: 112-49-2) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil. Ethers feature bent C–O–C linkages. In dimethyl ether, the bond angle is 111° and C–O distances are 141 pm. The barrier to rotation about the C–O bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.Product Details of 112-49-2

High-performance lithium-sulfur batteries enabled by regulating Li2S deposition was written by Lin, Qiaowei;Huang, Ling;Liu, Wenhua;Li, Zejian;Fang, Ruopian;Wang, Da-Wei;Yang, Quan-Hong;Lv, Wei. And the article was included in Physical Chemistry Chemical Physics in 2021.Product Details of 112-49-2 This article mentions the following:

Lithium-sulfur batteries (LSBs) have received intensive attention in recent years due to their high theor. energy d. derived from the lithiation of sulfur. In the discharge process, sulfur transforms into lithium polysulfides (LiPSs) that dissolve in liquid electrolytes and then into insoluble Li2S precipitated on the electrode surface. The electronically and ionically insulating Li2S leads to two critical issues, including the sluggish reaction kinetics from LiPSs to Li2S and the passivation of the electrode. In this regard, controlling the Li2S deposition is significant for improving the performance of LSBs. In this perspective, we have summarized the recent achievements in regulating the Li2S deposition to enhance the performance of LSBs, including the solution-mediated growth of Li2S, sulfur host enhanced nucleation and catalysis induced kinetic improvement. Moreover, the challenges and possibilities for future research studies are discussed, highlighting the significance of regulating the Li2S deposition to realize the high electrochem. performance and promote the practical uses of LSBs. In the experiment, the researchers used many compounds, for example, 2,5,8,11-Tetraoxadodecane (cas: 112-49-2Product Details of 112-49-2).

2,5,8,11-Tetraoxadodecane (cas: 112-49-2) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil. Ethers feature bent C–O–C linkages. In dimethyl ether, the bond angle is 111° and C–O distances are 141 pm. The barrier to rotation about the C–O bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.Product Details of 112-49-2

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Liu, Tongqing et al. published their research in Wuli Huaxue Xuebao in 2020 | CAS: 6972-61-8

3-(2,4-Dimethoxyphenyl)acrylic acid (cas: 6972-61-8) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. Ethers feature bent C–O–C linkages. In dimethyl ether, the bond angle is 111° and C–O distances are 141 pm. The barrier to rotation about the C–O bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.Product Details of 6972-61-8

Structure-property relationship of light-responsive wormlike micelles using methoxycinnamate derivatives as light-switchable molecules was written by Liu, Tongqing;Xue, Fangfang;Yi, Ping;Xia, Zhiyu;Dong, Jinfeng;Li, Xuefeng. And the article was included in Wuli Huaxue Xuebao in 2020.Product Details of 6972-61-8 This article mentions the following:

In this work, light-responsive viscoelastic wormlike micelles based on cetyltrimethylammonium hydroxide (CTAOH) and cinnamic acid derivatives, including cinnamic acid (CA), 2-methoxycinnamic acid (2-MCA), 3-methoxycinnamic acid (3-MCA), 4-methoxycinnamic acid (4-MCA), 2,3-dimethoxycinnamic acid (2,3-DMCA), 2,4-dimethoxycinnamic acid (2,4-DMCA), 2,3,4-trimethoxycinnamic acid (2,3,4-DMCA), and 3,4,5-trimethoxycinnamic acid (3,4,5-DMCA), were prepared The effects of the CA derivative structures, especially the position and number of methoxy moieties, on the formation of wormlike micelles were systematically determined The CA derivatives facilitated the formation of long and entangled wormlike micelles. 1H NMR results showed that the CA derivatives participated in the formation of wormlike micelles via insertion of the aromatic moieties into the aggregates. The number of methoxy moieties had a much stronger effect on the viscosity of the wormlike micelle solution than the position of this moiety. The larger the number of methoxy moiety, the smaller was the aggregate. Substituted methoxy moieties increased the steric hindrance between the surfactants and CA mols., thus hindering the formation of large aggregates. However, the position of the methoxy moiety had a predominant effect on the UV-light-induced transition of the wormlike micelles. Specifically, the ortho-methoxy moiety in the CA mols. dramatically enhanced the efficiency of UV-light-induced trans-cis isomerization. For example, the 2-MCA/CTAOH, 3-MCA/CTAOH, and 4-MCA/CTAOH binary systems (90 mmol·L-1/100 mmol·L-1) were gel-like with similar viscosities of around 20 Pa·s, but after UV light irradiation, they were transformed into a fluid with lower viscosity because of the formation of smaller aggregates. However, the irradiation time required for the transition varied significantly, as suggested by the results of viscosity measurements and UV-Vis spectroscopy. The 2-MCA/CTAOH system underwent complete phase transition within 3 h, whereas continuous transitions were observed for the 3-MCA/CTAOH and 4-MCA/CTAOH systems upon irradiation for 24 h. 1H NMR results suggested that the change in the configuration of MCA in the micelles before and after irradiation was the major cause of the abovementioned difference in the phase transition pattern. Initially, all the aromatic moieties of the trans-2-MCA mols. were deeply inserted into the hydrophobic cores of the micelles in a vertical manner, and the ionized carboxyl moiety was located in the palisade layer because of the electrostatic interactions between CTAOH and trans-2-MCA. In contrast, cis-2-MCA was inserted into the micelles in a horizontal manner, and some of the protons in the aromatic moiety were also transferred from the micellar core to the polar palisade layer. Accordingly, the CTAOH and cis-2-MCA mols. were packed loosely in the aggregates, thereby resulting in the formation of spherical micelles. Similar UV-light-induced transitions were observed for the 3-MCA/CTAOH and 4-MCA/CTAOH systems. In the experiment, the researchers used many compounds, for example, 3-(2,4-Dimethoxyphenyl)acrylic acid (cas: 6972-61-8Product Details of 6972-61-8).

3-(2,4-Dimethoxyphenyl)acrylic acid (cas: 6972-61-8) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. Ethers feature bent C–O–C linkages. In dimethyl ether, the bond angle is 111° and C–O distances are 141 pm. The barrier to rotation about the C–O bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.Product Details of 6972-61-8

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Bauduin, P. et al. published their research in Journal of Molecular Liquids in 2004 | CAS: 20324-33-8

1-((1-((1-Methoxypropan-2-yl)oxy)propan-2-yl)oxy)propan-2-ol (cas: 20324-33-8) belongs to ethers. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides. Electron-deficient reagents are also stabilized by ethers. For example, borane (BH3) is a useful reagent for making alcohols. Pure borane exists as its dimer, diborane (B2H6), a toxic gas that is inconvenient and hazardous to use. Borane forms stable complexes with ethers, however, and it is often supplied and used as its liquid complex with tetrahydrofuran (THF).Application of 20324-33-8

Temperature dependence of industrial propylene glycol alkyl ether/water mixtures was written by Bauduin, P.;Wattebled, L.;Schrodle, S.;Touraud, D.;Kunz, W.. And the article was included in Journal of Molecular Liquids in 2004.Application of 20324-33-8 This article mentions the following:

The miscibility of ten industrially used propylene glycol ethers with water is studied in the temperature range between 0 and 80 °C. Several of these systems show a lower critical point of demixing near room temperature The shapes of the phase diagrams are discussed in detail and compared to those of the widely used but potentially toxic ethylene glycol alkyl ether/water mixtures In the experiment, the researchers used many compounds, for example, 1-((1-((1-Methoxypropan-2-yl)oxy)propan-2-yl)oxy)propan-2-ol (cas: 20324-33-8Application of 20324-33-8).

1-((1-((1-Methoxypropan-2-yl)oxy)propan-2-yl)oxy)propan-2-ol (cas: 20324-33-8) belongs to ethers. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides. Electron-deficient reagents are also stabilized by ethers. For example, borane (BH3) is a useful reagent for making alcohols. Pure borane exists as its dimer, diborane (B2H6), a toxic gas that is inconvenient and hazardous to use. Borane forms stable complexes with ethers, however, and it is often supplied and used as its liquid complex with tetrahydrofuran (THF).Application of 20324-33-8

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Romadina, Elena I. et al. published their research in Journal of Materials Chemistry A: Materials for Energy and Sustainability in 2021 | CAS: 111-77-3

2-(2-Methoxyethoxy)ethanol (cas: 111-77-3) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive. Electron-deficient reagents are also stabilized by ethers. For example, borane (BH3) is a useful reagent for making alcohols. Pure borane exists as its dimer, diborane (B2H6), a toxic gas that is inconvenient and hazardous to use. Borane forms stable complexes with ethers, however, and it is often supplied and used as its liquid complex with tetrahydrofuran (THF).Computed Properties of C5H12O3

New highly soluble triarylamine-based materials as promising catholytes for redox flow batteries was written by Romadina, Elena I.;Volodin, Ivan A.;Stevenson, Keith J.;Troshin, Pavel A.. And the article was included in Journal of Materials Chemistry A: Materials for Energy and Sustainability in 2021.Computed Properties of C5H12O3 This article mentions the following:

A series of arylamines bearing oligoethylene glycol ether solubilizing moieties were designed and comprehensively evaluated as promising catholyte materials for non-aqueous redox flow batteries (RFBs). The triphenylamine core maintains the chem. stability of the radical cation, the ethylene glycol chains enhance the solubility up to complete miscibility with organic solvents, and the electron-withdrawing bromine substituents increase the redox potential of the compounds up to 0.61 V vs. Ag/AgNO3. The best material showed 99% coulombic efficiency in combination with good stability in over 50 charge-discharge cycles in laboratory RFB cells. The designed triarylamine-based catholyte materials appear promising for the development of next-generation high-voltage and high-capacity RFBs. In the experiment, the researchers used many compounds, for example, 2-(2-Methoxyethoxy)ethanol (cas: 111-77-3Computed Properties of C5H12O3).

2-(2-Methoxyethoxy)ethanol (cas: 111-77-3) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive. Electron-deficient reagents are also stabilized by ethers. For example, borane (BH3) is a useful reagent for making alcohols. Pure borane exists as its dimer, diborane (B2H6), a toxic gas that is inconvenient and hazardous to use. Borane forms stable complexes with ethers, however, and it is often supplied and used as its liquid complex with tetrahydrofuran (THF).Computed Properties of C5H12O3

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Liu, Xiaofeng et al. published their research in AMB Express in 2020 | CAS: 605-94-7

2,3-Dimethoxy-5-methylcyclohexa-2,5-diene-1,4-dione (cas: 605-94-7) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. The unique properties of ethers (i.e., that they are strongly polar, with nonbonding electron pairs but no hydroxyl group) enhance the formation and use of many reagents. For example, Grignard reagents cannot form unless an ether is present to share its lone pair of electrons with the magnesium atom. Complexation of the magnesium atom stabilizes the Grignard reagent and helps to keep it in solution.COA of Formula: C9H10O4

Comprehensive transcriptomic and proteomic analyses of antroquinonol biosynthetic genes and enzymes in Antrodia camphorata was written by Liu, Xiaofeng;Xia, Yongjun;Zhang, Yao;Yang, Caiyun;Xiong, Zhiqiang;Song, Xin;Ai, Lianzhong. And the article was included in AMB Express in 2020.COA of Formula: C9H10O4 This article mentions the following:

Abstract: Antroquinonol (AQ) has several remarkable bioactivities in acute myeloid leukemia and pancreatic cancer, but difficulties in the mass production of AQ hamper its applications. Currently, mol. biotechnol. methods, such as gene overexpression, have been widely used to increase the production of metabolites. However, AQ biosynthetic genes and enzymes are poorly understood. In this study, an integrated study coupling RNA-Seq and isobaric tags for relative and absolute quantitation (iTRAQ) were used to identify AQ synthesis-related genes and enzymes in Antrodia camphorata during coenzyme Q0-induced fermentation (FM). The upregulated genes related to acetyl-CoA synthesis indicated that acetyl-CoA enters the mevalonate pathway to form the farnesyl tail precursor of AQ. The metE gene for an enzyme with Me transfer activity provided sufficient Me groups for AQ structure formation. The CoQ2 and ubiA genes encode p-hydroxybenzoate polyprenyl transferase, linking coenzyme Q0 and the polyisoprene side chain to form coenzyme Q3. NADH is transformed into NAD+ and releases two electrons, which may be beneficial for the conversion of coenzyme Q3 to AQ. Understanding the biosynthetic genes and enzymes of AQ is important for improving its production by genetic means in the future. In the experiment, the researchers used many compounds, for example, 2,3-Dimethoxy-5-methylcyclohexa-2,5-diene-1,4-dione (cas: 605-94-7COA of Formula: C9H10O4).

2,3-Dimethoxy-5-methylcyclohexa-2,5-diene-1,4-dione (cas: 605-94-7) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. The unique properties of ethers (i.e., that they are strongly polar, with nonbonding electron pairs but no hydroxyl group) enhance the formation and use of many reagents. For example, Grignard reagents cannot form unless an ether is present to share its lone pair of electrons with the magnesium atom. Complexation of the magnesium atom stabilizes the Grignard reagent and helps to keep it in solution.COA of Formula: C9H10O4

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Wu, Ming-Der et al. published their research in Natural Product Communications in 2019 | CAS: 605-94-7

2,3-Dimethoxy-5-methylcyclohexa-2,5-diene-1,4-dione (cas: 605-94-7) belongs to ethers. The oxygen atom in ethers are more electronegative than carbon, thus the hydrogens which are alpha to the ethers are more acidic than the simple hydrocarbons. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides.Related Products of 605-94-7

Chemical Constituents from the Fungus Antrodia cinnamomea was written by Wu, Ming-Der;Cheng, Ming-Jen;Chen, Yen-Lin;Hsun-Hsuo-Chang;Kuo, Yueh-Hsiung;Lin, Chih-Chuan;Wu, Ho-Cheng. And the article was included in Natural Product Communications in 2019.Related Products of 605-94-7 This article mentions the following:

A new benzenoid, 4-methoxy-7-methylbenzo[d][1,3]dioxol-5-ol (1) and three known secondary metabolites 2,3-dimethoxy-5-methyl[1,4]benzoquinone (2), 2-methoxy-6-methyl-1,4-benzoquinone (3) and 5-methyl-benzo[1,3]dioxole-4,7-diol (4) were isolated from the mycelia of A. cinnamomea BCRC 36799 by solid state fermentation with adlay. Their chem. structures were elucidated on the basis of HRESIMS, NMR spectroscopic data and comparison with reported values. All isolated compounds 1-4 were tested for their cytotoxicity against the six cancer cell lines using the MTT assay. Among them, compound 3 displayed significant cytotoxic effects toward all six tested cancer cell lines, with IC50 values ranging from 2.8-8.7 μM in vitro. In the experiment, the researchers used many compounds, for example, 2,3-Dimethoxy-5-methylcyclohexa-2,5-diene-1,4-dione (cas: 605-94-7Related Products of 605-94-7).

2,3-Dimethoxy-5-methylcyclohexa-2,5-diene-1,4-dione (cas: 605-94-7) belongs to ethers. The oxygen atom in ethers are more electronegative than carbon, thus the hydrogens which are alpha to the ethers are more acidic than the simple hydrocarbons. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides.Related Products of 605-94-7

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Brissenden, Amanda J. et al. published their research in Journal of Polymer Science (Hoboken, NJ, United States) in 2020 | CAS: 111-77-3

2-(2-Methoxyethoxy)ethanol (cas: 111-77-3) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. Ethers can form hydrogen bonds with other molecules (alcohols, amines, etc.) that have O―H or N―H bonds. The ability to form hydrogen bonds with other compounds makes ethers particularly good solvents for a wide variety of organic compounds and a surprisingly large number of inorganic compounds.Product Details of 111-77-3

Insights into the polymerization kinetics of thermoresponsive polytrimethylene carbonate bearing a methoxyethoxy side group was written by Brissenden, Amanda J.;Amsden, Brian G.. And the article was included in Journal of Polymer Science (Hoboken, NJ, United States) in 2020.Product Details of 111-77-3 This article mentions the following:

The ring-opening polymerization kinetics of 5-[2-(2-methoxyethoxy)-ethoxymethyl]-5-methyl-1,3-dioxa-2-one (TMOE-2) and 5-[2-{2-(2-methoxyethoxy)ethyoxy}-ethoxymethyl]-5-methyl-1,3-dioxa-2-one (TMOE-3) was investigated using different catalysts with the aim to improve control over mol. weight The possibility of monomer impurities driving the variability in mol. weight that has been seen in different reports, was assessed and evidence of catalysis via an imidazole impurity was found. The catalysts 1,5,7-triazobicyclo(4.4.0)dec-5-ene (TBD), hydrogen chloride in di-Et ether (HCl.Et2O), stannous 2-ethylhexanoate (SnOct2), and catalyst free thermal polymerizations were conducted to understand the mechanisms influencing the mol. weight TBD and HCl.Et2O consistently achieved high conversion of the monomer; however, mol. weights greater than 7,000 Da could not be achieved due to competing side reactions. SnOct2 catalyzed and catalyst free thermal polymerizations were highly influenced by monomer purity and achieved lower conversion than TBD and HCl.Et2O. Understanding these mechanisms will guide future synthesis of poly(TMOE-2) and poly(TMOE-3) for biomedical applications. In the experiment, the researchers used many compounds, for example, 2-(2-Methoxyethoxy)ethanol (cas: 111-77-3Product Details of 111-77-3).

2-(2-Methoxyethoxy)ethanol (cas: 111-77-3) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. Ethers can form hydrogen bonds with other molecules (alcohols, amines, etc.) that have O―H or N―H bonds. The ability to form hydrogen bonds with other compounds makes ethers particularly good solvents for a wide variety of organic compounds and a surprisingly large number of inorganic compounds.Product Details of 111-77-3

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Li, Xingzhen et al. published their research in Asian Journal of Organic Chemistry in 2022 | CAS: 105-13-5

(4-Methoxyphenyl)methanol (cas: 105-13-5) belongs to ethers. The oxygen atom in ethers are more electronegative than carbon, thus the hydrogens which are alpha to the ethers are more acidic than the simple hydrocarbons. At room temperature, ethers are pleasant-smelling colourless liquids. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil.Application of 105-13-5

Mono-N-Alkylation of Sulfonamides with Alcohols Catalyzed by Iridium N-Heterocyclic Carbene-Phosphine Complexes was written by Li, Xingzhen;Peters, Bram B. C.;Tan, Min;He, Lei;Yang, Jianping;Andersson, Pher G.;Zhou, Taigang. And the article was included in Asian Journal of Organic Chemistry in 2022.Application of 105-13-5 This article mentions the following:

A N-heterocyclic carbene-phosphine iridium complex was presented for the efficient and selective mono-N-alkylation of sulfonamides with alcs. based on a borrowing hydrogenation strategy. Herein, water was the only byproduct and this methodol. thus offered a more environmentally benign and interesting alternative to the use of traditional alkylating reagents. This facile protocol tolerated a large number of (hetero) aromatic and aliphatic sulfonamides as well as (hetero) aromatic and aliphatic alcs. to obtain the desired product is high isolated yield (up to 98%). The alkylation completely retarded after the formation of the secondary sulfonamide and no over-alkylation was observed in all cases. The option to run the reaction under solvent-free conditions as well as the scalability of this borrowing hydrogenation were key features of this protocol. In the experiment, the researchers used many compounds, for example, (4-Methoxyphenyl)methanol (cas: 105-13-5Application of 105-13-5).

(4-Methoxyphenyl)methanol (cas: 105-13-5) belongs to ethers. The oxygen atom in ethers are more electronegative than carbon, thus the hydrogens which are alpha to the ethers are more acidic than the simple hydrocarbons. At room temperature, ethers are pleasant-smelling colourless liquids. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil.Application of 105-13-5

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Voigt, Tobias et al. published their research in Angewandte Chemie, International Edition in 2013 | CAS: 3929-47-3

3-(3,4-Dimethoxyphenyl)propan-1-ol (cas: 3929-47-3) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil. Ethers feature bent C–O–C linkages. In dimethyl ether, the bond angle is 111° and C–O distances are 141 pm. The barrier to rotation about the C–O bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.HPLC of Formula: 3929-47-3

A Natural Product Inspired Tetrahydropyran Collection Yields Mitosis Modulators that Synergistically Target CSE1L and Tubulin was written by Voigt, Tobias;Gerding-Reimers, Claas;Ngoc Tran, Tuyen Thi;Bergmann, Sabrina;Lachance, Hugo;Schoelermann, Beate;Brockmeyer, Andreas;Janning, Petra;Ziegler, Slava;Waldmann, Herbert. And the article was included in Angewandte Chemie, International Edition in 2013.HPLC of Formula: 3929-47-3 This article mentions the following:

A collection of 150 tetrahydropyran derivatives are prepared via Prins cyclization. Of theses compounds, tubulexins A (I), B and C are identified which are modulators of mitosis and inhibit tubulin polymerization In the experiment, the researchers used many compounds, for example, 3-(3,4-Dimethoxyphenyl)propan-1-ol (cas: 3929-47-3HPLC of Formula: 3929-47-3).

3-(3,4-Dimethoxyphenyl)propan-1-ol (cas: 3929-47-3) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil. Ethers feature bent C–O–C linkages. In dimethyl ether, the bond angle is 111° and C–O distances are 141 pm. The barrier to rotation about the C–O bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.HPLC of Formula: 3929-47-3

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Tang, Dong et al. published their research in Journal of Heterocyclic Chemistry in 2022 | CAS: 105-13-5

(4-Methoxyphenyl)methanol (cas: 105-13-5) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides.Safety of (4-Methoxyphenyl)methanol

Construction of substituted pyrazolo[4,3-c]quinolines via [5+1] cyclization of pyrazole-arylamines with alcohols/amines in one pot was written by Tang, Dong;Mu, Yangxiu;Iqbal, Zafar;He, Lili;Jiang, Rui;Hou, Jing;Yang, Zhixiang;Yang, Minghua. And the article was included in Journal of Heterocyclic Chemistry in 2022.Safety of (4-Methoxyphenyl)methanol This article mentions the following:

An efficient protocol had been developed for the synthesis of pyrazolo[4,3-c]quinoline derivatives I [R1 = Me, Ph, 3-pyridyl, etc.; R2 = Ph, 4-MeC6H4, 4-ClC6H4, 4-BrC6H4, 4-NCC6H4; R3 = Ph, 1-naphthyl, 2-thienyl, etc.], by reacting (1H-pyrazol-5-yl)anilines and readily available alcs./amines. A wide range of substrates with diverse functional groups were smoothly converted to the corresponding products in moderate to good yields, under optimal reaction conditions. Furthermore, the strategy also proceeded well with thiol and amino acid to access pyrazolo[4,3-c]quinoline derivatives In the experiment, the researchers used many compounds, for example, (4-Methoxyphenyl)methanol (cas: 105-13-5Safety of (4-Methoxyphenyl)methanol).

(4-Methoxyphenyl)methanol (cas: 105-13-5) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides.Safety of (4-Methoxyphenyl)methanol

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem