Sandanayake, Saman et al. published their research in Australian Journal of Chemistry in 2014 | CAS: 66943-05-3

1,4,7,10-Tetraoxa-13-azacyclopentadecane (cas: 66943-05-3) belongs to ethers. The oxygen atom in ethers are more electronegative than carbon, thus the hydrogens which are alpha to the ethers are more acidic than the simple hydrocarbons. Ethers can form hydrogen bonds with other molecules (alcohols, amines, etc.) that have O―H or N―H bonds. The ability to form hydrogen bonds with other compounds makes ethers particularly good solvents for a wide variety of organic compounds and a surprisingly large number of inorganic compounds.SDS of cas: 66943-05-3

Crown Ether Derivatised Pyromellitic Diimides was written by Sandanayake, Saman;Langford, Steven J.. And the article was included in Australian Journal of Chemistry in 2014.SDS of cas: 66943-05-3 This article mentions the following:

Pyromellitic diimide functionalized on the aromatic core with azacrown ethers were synthesized and characterized by anal. methods including x-ray crystallog. Changes in their UV-visible spectra by the addition of metal salts were studied. In the experiment, the researchers used many compounds, for example, 1,4,7,10-Tetraoxa-13-azacyclopentadecane (cas: 66943-05-3SDS of cas: 66943-05-3).

1,4,7,10-Tetraoxa-13-azacyclopentadecane (cas: 66943-05-3) belongs to ethers. The oxygen atom in ethers are more electronegative than carbon, thus the hydrogens which are alpha to the ethers are more acidic than the simple hydrocarbons. Ethers can form hydrogen bonds with other molecules (alcohols, amines, etc.) that have O―H or N―H bonds. The ability to form hydrogen bonds with other compounds makes ethers particularly good solvents for a wide variety of organic compounds and a surprisingly large number of inorganic compounds.SDS of cas: 66943-05-3

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Sarazin, Yann et al. published their research in European Journal of Inorganic Chemistry in 2010 | CAS: 66943-05-3

1,4,7,10-Tetraoxa-13-azacyclopentadecane (cas: 66943-05-3) belongs to ethers. The oxygen atom in ethers are more electronegative than carbon, thus the hydrogens which are alpha to the ethers are more acidic than the simple hydrocarbons. At room temperature, ethers are pleasant-smelling colourless liquids. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil.Name: 1,4,7,10-Tetraoxa-13-azacyclopentadecane

Discrete, Base-Free, Cationic Alkaline-Earth Complexes – Access and Catalytic Activity in the Polymerization of Lactide was written by Sarazin, Yann;Poirier, Valentin;Roisnel, Thierry;Carpentier, Jean-Francois. And the article was included in European Journal of Inorganic Chemistry in 2010.Name: 1,4,7,10-Tetraoxa-13-azacyclopentadecane This article mentions the following:

Well-defined, base free cations of zinc and the alk.-earth metals (Mg, Ca, Sr, Ba) supported by a multi-dentate phenolate ligand and stabilized by perfluorinated weakly coordinating counterions are readily available by simple procedures; the solid-state structures of the magnesium and calcium derivatives were elucidated. Upon treatment with an excess of iPrOH, these complexes generate highly efficient binary catalytic systems for the immortal ring-opening polymerization of L-lactide, yielding poly(L-lactide)s with controlled architectures and mol. features. In the experiment, the researchers used many compounds, for example, 1,4,7,10-Tetraoxa-13-azacyclopentadecane (cas: 66943-05-3Name: 1,4,7,10-Tetraoxa-13-azacyclopentadecane).

1,4,7,10-Tetraoxa-13-azacyclopentadecane (cas: 66943-05-3) belongs to ethers. The oxygen atom in ethers are more electronegative than carbon, thus the hydrogens which are alpha to the ethers are more acidic than the simple hydrocarbons. At room temperature, ethers are pleasant-smelling colourless liquids. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil.Name: 1,4,7,10-Tetraoxa-13-azacyclopentadecane

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Danel, Andrzej et al. published their research in Dyes and Pigments in 2021 | CAS: 66943-05-3

1,4,7,10-Tetraoxa-13-azacyclopentadecane (cas: 66943-05-3) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. But on the other hand, ethers undergo cleavage by reaction with acids. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides.Electric Literature of C10H21NO4

1H-pyrazolo[3,4-b]quinoline derivative with the chelating substituent and synthesis and spectral properties as a fluorescent sensor for cation detection was written by Danel, Andrzej;Kolbus, Anna;Grabka, Danuta;Kucharek, Mateusz;Pokladko-Kowar, Monika. And the article was included in Dyes and Pigments in 2021.Electric Literature of C10H21NO4 This article mentions the following:

A new fluorescent 1H-pyrazolo[3,4-b]quinoline derivative (PQ4K, I) with a crown moiety was synthesized and investigated as a potential sensor for certain cations. UV-visible spectroscopy was used to investigate the spectral properties of PQ4K. The compound absorbed blue light and emitted a low intensity blue-green light. After dissolving PQ4K in methanol and acetonitrile, the fluorescence response for the presence of selected di- and trivalent ions like Zn2+, Co2+, Ni2+, Ca2+, Pb2+, Al3+, Cr3+, Cd2+, Cu2+, Hg2+ was checked. The PQ4K solutions strongly responded to some metal ions increasing the fluorescence intensity and the red shift of the fluorescence spectrum. The highest yields was observed for the Pb2+ ions in the PQ4K-methanol solution and for the Ca2+, Cd2+, Pb2+ ions in the PQ4K-acetonitrile solution No increase in the fluorescence intensity for Hg2+ ions was observed Much higher quantum yields were observed for solutions with acetonitrile than with methanol. In the experiment, the researchers used many compounds, for example, 1,4,7,10-Tetraoxa-13-azacyclopentadecane (cas: 66943-05-3Electric Literature of C10H21NO4).

1,4,7,10-Tetraoxa-13-azacyclopentadecane (cas: 66943-05-3) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. But on the other hand, ethers undergo cleavage by reaction with acids. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides.Electric Literature of C10H21NO4

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Brandel, Jeremy et al. published their research in Chemical Communications (Cambridge, United Kingdom) in 2010 | CAS: 66943-05-3

1,4,7,10-Tetraoxa-13-azacyclopentadecane (cas: 66943-05-3) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. But on the other hand, ethers undergo cleavage by reaction with acids. Ethers feature bent C–O–C linkages. In dimethyl ether, the bond angle is 111° and C–O distances are 141 pm. The barrier to rotation about the C–O bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.Application of 66943-05-3

Remarkable Mg2+-selective emission of an azacrown receptor based on Ir(III) complex was written by Brandel, Jeremy;Sairenji, Masaki;Ichikawa, Kyoko;Nabeshima, Tatsuya. And the article was included in Chemical Communications (Cambridge, United Kingdom) in 2010.Application of 66943-05-3 This article mentions the following:

A new aza-15-crown-5 ether-appended iridium complex was synthesized and showed promising on-off selective emission-triggering by inhibition of photoinduced electron transfer (PET) upon binding of Mg2+. In the experiment, the researchers used many compounds, for example, 1,4,7,10-Tetraoxa-13-azacyclopentadecane (cas: 66943-05-3Application of 66943-05-3).

1,4,7,10-Tetraoxa-13-azacyclopentadecane (cas: 66943-05-3) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. But on the other hand, ethers undergo cleavage by reaction with acids. Ethers feature bent C–O–C linkages. In dimethyl ether, the bond angle is 111° and C–O distances are 141 pm. The barrier to rotation about the C–O bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.Application of 66943-05-3

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Smith, Jacob B. et al. published their research in Organometallics in 2019 | CAS: 66943-05-3

1,4,7,10-Tetraoxa-13-azacyclopentadecane (cas: 66943-05-3) belongs to ethers. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides. Ethers can form hydrogen bonds with other molecules (alcohols, amines, etc.) that have O―H or N―H bonds. The ability to form hydrogen bonds with other compounds makes ethers particularly good solvents for a wide variety of organic compounds and a surprisingly large number of inorganic compounds.COA of Formula: C10H21NO4

Organometallic Elaboration as a Strategy for Tuning the Supramolecular Characteristics of Aza-Crown Ethers was written by Smith, Jacob B.;Camp, Andrew M.;Farquhar, Alexandra H.;Kerr, Stewart H.;Chen, Chun-Hsing;Miller, Alexander J. M.. And the article was included in Organometallics in 2019.COA of Formula: C10H21NO4 This article mentions the following:

Cyclometalated square-planar and octahedral transition metal complexes I (L1-L3 void, Cl, H, CO) with pincer NCP-ligands functionalized by azacrown ether moiety were prepared and examined for binding affinity towards alkali metal ions. Outfitting an aza-crown ether with an organotransition metal pendant provides a mechanism for tuning its supramol. properties. The binding affinity can be tuned by more than 2 orders of magnitude by changing the identity of the transition metal center, altering the overall charge of the complex, or engaging in organometallic ligand substitution reactions. High Li+ selectivity (up to 29-fold higher affinity than Na+), proton-responsive behavior, and ion pair (ditopic) binding capabilities are observed in the metalla-crown ethers. In the experiment, the researchers used many compounds, for example, 1,4,7,10-Tetraoxa-13-azacyclopentadecane (cas: 66943-05-3COA of Formula: C10H21NO4).

1,4,7,10-Tetraoxa-13-azacyclopentadecane (cas: 66943-05-3) belongs to ethers. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides. Ethers can form hydrogen bonds with other molecules (alcohols, amines, etc.) that have O―H or N―H bonds. The ability to form hydrogen bonds with other compounds makes ethers particularly good solvents for a wide variety of organic compounds and a surprisingly large number of inorganic compounds.COA of Formula: C10H21NO4

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Chahal, Mandeep K. et al. published their research in Chemistry – A European Journal in 2020 | CAS: 66943-05-3

1,4,7,10-Tetraoxa-13-azacyclopentadecane (cas: 66943-05-3) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. But ether is more polar than alkenes. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides.Related Products of 66943-05-3

Selective Phase Transfer Reagents (OxP-crowns) for Chromogenic Detection of Nitrates Especially Ammonium Nitrate was written by Chahal, Mandeep K.;Payne, Daniel T.;Labuta, Jan;Karr, Paul A.;D′Souza, Francis;Ariga, Katsuhiko;Hill, Jonathan P.. And the article was included in Chemistry – A European Journal in 2020.Related Products of 66943-05-3 This article mentions the following:

Nitrogen and phosphorus-containing ions such as ammonium, nitrates and phosphates are anthropogenic pollutants while ammonium nitrate may be diverted for nefarious purposes in improvised explosive devices. Crown ether-oxoporphyrinogen conjugates (OxP-crowns) are used to selectively detect nitrates, especially their ion pairs with K+ and NH4+, based on ion pair complexation of OxP-crowns under phase transfer conditions. The presence of phosphate and carbonate lead to deprotonation of OxP-crowns. OxP-1N18C6 is capable of extracting ion pairs with nitrate from aqueous phase leading to a selective chromogenic response. Deprotonation of the OxP moiety leads to [OxP]-1N18C6[K+] and is promoted by crown ether selective cation binding coupled with hydration of basic oxoanions, which are constrained to remain in the aqueous phase. This work illustrates the utility of mol. design to exploit partitioning and ion hydration effects establishing the selectivity of the chromogenic response. In the experiment, the researchers used many compounds, for example, 1,4,7,10-Tetraoxa-13-azacyclopentadecane (cas: 66943-05-3Related Products of 66943-05-3).

1,4,7,10-Tetraoxa-13-azacyclopentadecane (cas: 66943-05-3) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. But ether is more polar than alkenes. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides.Related Products of 66943-05-3

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Moczar, Ildiko et al. published their research in Tetrahedron in 2010 | CAS: 66943-05-3

1,4,7,10-Tetraoxa-13-azacyclopentadecane (cas: 66943-05-3) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides.Safety of 1,4,7,10-Tetraoxa-13-azacyclopentadecane

Synthesis and optical characterization of novel azacrown ethers containing an acridinone or an N-methylacridinone unit as potential fluorescent chemosensors was written by Moczar, Ildiko;Huszthy, Peter;Mezei, Andras;Kadar, Mihaly;Nyitrai, Jozsef;Toth, Klara. And the article was included in Tetrahedron in 2010.Safety of 1,4,7,10-Tetraoxa-13-azacyclopentadecane This article mentions the following:

Four new achiral and four new chiral monoazacrown ethers containing an acridinone or an N-methylacridinone fluorescent signalling unit were prepared by reacting chloromethyl-substituted acridinone derivatives with achiral monoazacrown ethers with different cavity sizes and enantiopure monoaza-18-crown-6 ethers having two Me and two isoBu groups on their chiral centers, resp. The operation of these chemosensors is based on the photoinduced electron transfer (PET) process, thus they show fluorescence enhancement in the presence of cationic guests. Their fluorescent behavior as well as their complexation properties towards selected metal ions and the enantiomers of α-(1-naphthyl)ethylammonium perchlorate and potassium mandelate were examined In the experiment, the researchers used many compounds, for example, 1,4,7,10-Tetraoxa-13-azacyclopentadecane (cas: 66943-05-3Safety of 1,4,7,10-Tetraoxa-13-azacyclopentadecane).

1,4,7,10-Tetraoxa-13-azacyclopentadecane (cas: 66943-05-3) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides.Safety of 1,4,7,10-Tetraoxa-13-azacyclopentadecane

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Basurto, Sara et al. published their research in Organic & Biomolecular Chemistry in 2010 | CAS: 66943-05-3

1,4,7,10-Tetraoxa-13-azacyclopentadecane (cas: 66943-05-3) belongs to ethers. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides. Ethers feature bent C–O–C linkages. In dimethyl ether, the bond angle is 111° and C–O distances are 141 pm. The barrier to rotation about the C–O bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.SDS of cas: 66943-05-3

Simple 1-dicyanomethylene-2-chloro-3-aminoindene push-pull chromophores: applications in cation and anion sensing was written by Basurto, Sara;Miguel, Daniel;Moreno, Daniel;Neo, Ana G.;Quesada, Roberto;Torroba, Tomas. And the article was included in Organic & Biomolecular Chemistry in 2010.SDS of cas: 66943-05-3 This article mentions the following:

Push-pull chromophores based on 1-dicyanomethylene-2-chloro-3-aminoindene are readily synthesized. These compounds undergo dramatic color changes in the presence of metal cations as a result of the interaction of the amino substituent with the analytes. One of these compounds is a selective Cu(ii) colorimetric probe in MeCN solution, displaying a dramatic color change upon coordination of the amine group to the metal center. These compounds are also selective cyanide sensors in MeCN solution because of the disruption of the intramol. charge transfer process as the result of the nucleophilic addition of the anion to the indene moiety. In the experiment, the researchers used many compounds, for example, 1,4,7,10-Tetraoxa-13-azacyclopentadecane (cas: 66943-05-3SDS of cas: 66943-05-3).

1,4,7,10-Tetraoxa-13-azacyclopentadecane (cas: 66943-05-3) belongs to ethers. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides. Ethers feature bent C–O–C linkages. In dimethyl ether, the bond angle is 111° and C–O distances are 141 pm. The barrier to rotation about the C–O bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.SDS of cas: 66943-05-3

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Schwarze, Thomas et al. published their research in Chemistry – A European Journal in 2019 | CAS: 66943-05-3

1,4,7,10-Tetraoxa-13-azacyclopentadecane (cas: 66943-05-3) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. But on the other hand, ethers undergo cleavage by reaction with acids. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides.Formula: C10H21NO4

Na+ Selective Fluorescent Tools Based on Fluorescence Intensity Enhancements, Lifetime Changes, and on a Ratiometric Response was written by Schwarze, Thomas;Riemer, Janine;Mueller, Holger;John, Leonard;Holdt, Hans-Juergen;Wessig, Pablo. And the article was included in Chemistry – A European Journal in 2019.Formula: C10H21NO4 This article mentions the following:

Over the years, we developed highly selective fluorescent probes for K+ in water, which show K+-induced fluorescence intensity enhancements, lifetime changes, or a ratiometric behavior at two emission wavelengths (cf. Scheme 1, K1-K4). In this paper, we introduce selective fluorescent probes for Na+ in water, which also show Na+ induced signal changes, which are analyzed by diverse fluorescence techniques. Initially, we synthesized the fluorescent probes 2, 4, 5, 6 and 10 for a fluorescence anal. by intensity enhancements at one wavelength by varying the Na+ responsive ionophore unit and the fluorophore moiety to adjust different Kd values for an intra- or extracellular Na+ anal. Thus, we found that 2, 4 and 5 are Na+ selective fluorescent tools, which are able to measure physiol. important Na+ levels at wavelengths higher than 500 nm. Secondly, we developed the fluorescent probes 7 and 8 to analyze precise Na+ levels by fluorescence lifetime changes. Herein, only 8 (Kd=106 mM) is a capable fluorescent tool to measure Na+ levels in blood samples by lifetime changes. Finally, the fluorescent probe 9 was designed to show a Na+ induced ratiometric fluorescence behavior at two emission wavelengths. As desired, 9 (Kd=78 mM) showed a ratiometric fluorescence response towards Na+ ions and is a suitable tool to measure physiol. relevant Na+ levels by the intensity change of two emission wavelengths at 404 nm and 492 nm. In the experiment, the researchers used many compounds, for example, 1,4,7,10-Tetraoxa-13-azacyclopentadecane (cas: 66943-05-3Formula: C10H21NO4).

1,4,7,10-Tetraoxa-13-azacyclopentadecane (cas: 66943-05-3) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. But on the other hand, ethers undergo cleavage by reaction with acids. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides.Formula: C10H21NO4

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Sewbalas, Alisha et al. published their research in Medicinal Chemistry Research in 2013 | CAS: 66943-05-3

1,4,7,10-Tetraoxa-13-azacyclopentadecane (cas: 66943-05-3) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive. Ethers feature bent C–O–C linkages. In dimethyl ether, the bond angle is 111° and C–O distances are 141 pm. The barrier to rotation about the C–O bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.Name: 1,4,7,10-Tetraoxa-13-azacyclopentadecane

Enhancement of transfection activity in HEK293 cells by lipoplexes containing cholesteryl nitrogen-pivoted aza-crown ethers was written by Sewbalas, Alisha;Ul Islam, Rafique;van Otterlo, Willem A. L.;de Koning, Charles B.;Singh, Moganavelli;Arbuthnot, Patrick;Ariatti, Mario. And the article was included in Medicinal Chemistry Research in 2013.Name: 1,4,7,10-Tetraoxa-13-azacyclopentadecane This article mentions the following:

Two nitrogen-pivoted aza-crown ethers (aza-CEs) linked to the cholesteryl-fused ring system N-(cholesteryloxycarbonyl)aza-15-crown-5 and N-(cholesteryloxycarbonyl)aza-18-crown-6 have been incorporated into cationic liposomes containing the cytofectin 3β[N-(N’,N’-dimethylaminopropane)carbamoyl] cholesterol (Chol-T) and the neutral co-lipid dioleoylphosphatidylethanolamine. These novel liposomes form stable complexes with plasmid DNA and afford it good protection from serum nuclease digestion. Ethidium displacement studies suggest that the DNA is more loosely packed in aza-CE containing lipoplexes, a finding which is supported by band shift assays that reveal N/P end point ratios of 2:1, 3:1 and 3.5:1 for Chol-T control liposomes, aza-15-crown-5 and aza-18-crown-6 containing liposomes, resp. The transfection activities of crown ether-containing lipoplex formulations in the human embryonic kidney cell line HEK293 are twofold greater than those achieved by Chol-T lipoplexes not containing the aza-CEs. This observation may be attributable to the more loosely packed DNA, which facilitates disassembly, and to endosomal perturbations caused by macrocycle entrapped cations. In the experiment, the researchers used many compounds, for example, 1,4,7,10-Tetraoxa-13-azacyclopentadecane (cas: 66943-05-3Name: 1,4,7,10-Tetraoxa-13-azacyclopentadecane).

1,4,7,10-Tetraoxa-13-azacyclopentadecane (cas: 66943-05-3) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive. Ethers feature bent C–O–C linkages. In dimethyl ether, the bond angle is 111° and C–O distances are 141 pm. The barrier to rotation about the C–O bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.Name: 1,4,7,10-Tetraoxa-13-azacyclopentadecane

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem