Nguyen, Manh Tien et al. published their research in Fluid Phase Equilibria in 2020 | CAS: 112-49-2

2,5,8,11-Tetraoxadodecane (cas: 112-49-2) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. Ethers feature bent C–O–C linkages. In dimethyl ether, the bond angle is 111° and C–O distances are 141 pm. The barrier to rotation about the C–O bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.Reference of 112-49-2

Effects of zwitterionic molecules on ionic association in ethylene oxide-based electrolytes was written by Nguyen, Manh Tien;Shao, Qing. And the article was included in Fluid Phase Equilibria in 2020.Reference of 112-49-2 This article mentions the following:

This work investigates the effect of zwitterionic mols. on ionic association in ethylene oxide (EO)-based electrolytes using mol. dynamics simulations. Zwitterionic mols. can associate with cations and anions because they possess both pos. and neg. charged groups. This unique feature can be leveraged to develop electrolytes with high ionic conductivity if we understand how zwitterionic mols. influence ionic associations We investigate the ionic associations in the electrolytes composed of oligo(ethylene oxide) (EO) (EOx, x = 2, 3, 4, and 5), LiTFSI and zwitterionic mols. containing cationic imidazole group and anionic sulfonate group using mol. dynamics simulations. The analyzed properties include the radial distribution functions between Li+, [TFSI], EOx and zwitterionic mols., the structures and dynamics of Li+-[TFSI], Li+– EOx and Li+-zwitterion associations, and the diffusion coefficients of Li+, [TFSI], EOx and zwitterionic mols. The simulation results show two distinct effects of zwitterionic mols. on ionic associations in the electrolytes. First, they could release Li+ from the trapping effect of EOx chains and accelerate Li+ transport. Second, they can associate with Li+ themselves and slow down the Li+ transport. The competition between these two effects relates to the length of the EOx chains. Our simulations suggest that zwitterionic mols. could help manipulate the ionic conductivity of polyethylene oxide electrolytes. In the experiment, the researchers used many compounds, for example, 2,5,8,11-Tetraoxadodecane (cas: 112-49-2Reference of 112-49-2).

2,5,8,11-Tetraoxadodecane (cas: 112-49-2) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. Ethers feature bent C–O–C linkages. In dimethyl ether, the bond angle is 111° and C–O distances are 141 pm. The barrier to rotation about the C–O bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.Reference of 112-49-2

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Wang, Hui-Min et al. published their research in Integrative Cancer Therapies in 2017 | CAS: 605-94-7

2,3-Dimethoxy-5-methylcyclohexa-2,5-diene-1,4-dione (cas: 605-94-7) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. But on the other hand, ethers undergo cleavage by reaction with acids. At room temperature, ethers are pleasant-smelling colourless liquids. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil.Related Products of 605-94-7

Coenzyme Q0 Enhances Ultraviolet B-Induced Apoptosis in Human Estrogen Receptor-Positive Breast (MCF-7) Cancer Cells was written by Wang, Hui-Min;Yang, Hsin-Ling;Thiyagarajan, Varadharajan;Huang, Tzu-Hsiang;Huang, Pei-Jane;Chen, Ssu-Ching;Liu, Jer-Yuh;Hsu, Li-Sung;Chang, Hsueh-Wei;Hseu, You-Cheng. And the article was included in Integrative Cancer Therapies in 2017.Related Products of 605-94-7 This article mentions the following:

Coenzyme Q0 (CoQ0; 2,3-dimethoxy-5-methyl-1,4-benzoquinone), a major active constituent of Antrodia camphorata, has been shown to inhibit human triple-neg. breast cancer (MDA-MB-231) cells through induction of apoptosis and cell-cycle arrest. Ecol. studies have suggested a possible association between UV B (UVB) radiation and reduction in the risk of breast cancer. However, the underlying mechanism of the combination of CoQ0 and UVB in human estrogen receptor-pos. breast cancer (MCF-7) remains unclear. In this study, the possible effect of CoQ0 on inducing apoptosis in MCF-7 cells under exposure to low-dose UVB (0.05 J/cm2) has been investigated. CoQ0 treatment (0-35μM, for 24-72 h) inhibits moderately the growth of breast cancer MCF-7 cells, and the cell viability was significantly decreased when the cells were pretreated with UVB irradiation It was noted that there was a remarkable accumulation of subploid cells, the so-called sub-G1 peak, in CoQ0-treated cells by using flow cytometric anal., which suggests that the viability reduction observed after treatment may result from apoptosis induction in MCF-7 cells. CoQ0 caused an elevation of reactive oxygen species, as indicated by dichlorofluorescein fluorescence, and UVB pretreatment significantly increased CoQ0-induced reactive oxygen species generation in MCF-7 cells. In addition, cells were exposed to CoQ0, and the induction of DNA damage was evaluated by single-cell gel electrophoresis (comet assay). CoQ0-induced DNA damage was remarkably enhanced by UVB pretreatment. Furthermore, CoQ0 induced apoptosis in MCF-7 cells, which was associated with PARP degradation, Bcl-2/Bax dysregulation, and p53 expression as shown by western blot. Collectively, these findings suggest that CoQ0 might be an important supplemental agent for treating patients with breast cancer. In the experiment, the researchers used many compounds, for example, 2,3-Dimethoxy-5-methylcyclohexa-2,5-diene-1,4-dione (cas: 605-94-7Related Products of 605-94-7).

2,3-Dimethoxy-5-methylcyclohexa-2,5-diene-1,4-dione (cas: 605-94-7) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. But on the other hand, ethers undergo cleavage by reaction with acids. At room temperature, ethers are pleasant-smelling colourless liquids. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil.Related Products of 605-94-7

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Peng, Jun et al. published their research in Xiandai Tuliao Yu Tuzhuang in 2021 | CAS: 111-77-3

2-(2-Methoxyethoxy)ethanol (cas: 111-77-3) belongs to ethers. The oxygen atom in ethers are more electronegative than carbon, thus the hydrogens which are alpha to the ethers are more acidic than the simple hydrocarbons. Ethers can form hydrogen bonds with other molecules (alcohols, amines, etc.) that have O―H or N―H bonds. The ability to form hydrogen bonds with other compounds makes ethers particularly good solvents for a wide variety of organic compounds and a surprisingly large number of inorganic compounds.Quality Control of 2-(2-Methoxyethoxy)ethanol

Preparation and properties of waterborne epoxy acrylate emulsion was written by Peng, Jun;Zhang, Xi-wen;Du, Zhu-kang;Ren, Bi-ye. And the article was included in Xiandai Tuliao Yu Tuzhuang in 2021.Quality Control of 2-(2-Methoxyethoxy)ethanol This article mentions the following:

A water-based epoxy acrylate emulsifier was synthesized. The feeding ratio of n (mole of epoxy group): n (mole of carboxyl group)=1.0:1.1 should be used to obtain a good emulsifier. The structure was characterized by NMR and the reactivity of the emulsifier was proved. When the added amount is 40% during emulsification, a stable emulsion can be obtained, and the amount of emulsifier used is small. In the experiment, the researchers used many compounds, for example, 2-(2-Methoxyethoxy)ethanol (cas: 111-77-3Quality Control of 2-(2-Methoxyethoxy)ethanol).

2-(2-Methoxyethoxy)ethanol (cas: 111-77-3) belongs to ethers. The oxygen atom in ethers are more electronegative than carbon, thus the hydrogens which are alpha to the ethers are more acidic than the simple hydrocarbons. Ethers can form hydrogen bonds with other molecules (alcohols, amines, etc.) that have O―H or N―H bonds. The ability to form hydrogen bonds with other compounds makes ethers particularly good solvents for a wide variety of organic compounds and a surprisingly large number of inorganic compounds.Quality Control of 2-(2-Methoxyethoxy)ethanol

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Xiong, Yucong et al. published their research in Applied Organometallic Chemistry in 2022 | CAS: 105-13-5

(4-Methoxyphenyl)methanol (cas: 105-13-5) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive. The unique properties of ethers (i.e., that they are strongly polar, with nonbonding electron pairs but no hydroxyl group) enhance the formation and use of many reagents. For example, Grignard reagents cannot form unless an ether is present to share its lone pair of electrons with the magnesium atom. Complexation of the magnesium atom stabilizes the Grignard reagent and helps to keep it in solution.Safety of (4-Methoxyphenyl)methanol

Bimetallic CoMoO4@C nanorod catalyzes one-pot synthesis of benzimidazoles from benzyl alcohol and o-phenylendiamine without alkali was written by Xiong, Yucong;Wang, Kaizhi;Ma, Lei;Zhu, Jiukang;Miao, Yujia;Gong, Li;Mu, Xiao;Wan, Jiang;Li, Rong. And the article was included in Applied Organometallic Chemistry in 2022.Safety of (4-Methoxyphenyl)methanol This article mentions the following:

Benzimidazoles possess a series of applications for industrial chem. and biomedicine. However, the complicated synthetic steps and harsh reaction conditions limit its further development. Herein, authors reported an efficient, environmentally friendly, and stable bimetallic CoMoO4@C catalyst, which used low-cost cobalt and molybdenum as the basic raw material. In base-free conditions, it has been proved that the yield could achieve to 99.9% for the synthesis of benzimidazoles with liberating water as the sole byproduct, and the catalyst remains stable and efficient even after five successive cycle tests. Addnl., experiments and characterizations confirm the good oxidation activity of the catalyst benefits from the numerous oxygen vacancies provided by the high concentration of low-valent cobalt (Co2+) and the doping of carbon improves the intermol. transport of electrons. Furthermore, this strategy could potentially be applied in the industrial production of benzimidazoles. In the experiment, the researchers used many compounds, for example, (4-Methoxyphenyl)methanol (cas: 105-13-5Safety of (4-Methoxyphenyl)methanol).

(4-Methoxyphenyl)methanol (cas: 105-13-5) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive. The unique properties of ethers (i.e., that they are strongly polar, with nonbonding electron pairs but no hydroxyl group) enhance the formation and use of many reagents. For example, Grignard reagents cannot form unless an ether is present to share its lone pair of electrons with the magnesium atom. Complexation of the magnesium atom stabilizes the Grignard reagent and helps to keep it in solution.Safety of (4-Methoxyphenyl)methanol

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

de Lucca, Anthony J. et al. published their research in Annals of Agricultural and Environmental Medicine in 2010 | CAS: 20324-33-8

1-((1-((1-Methoxypropan-2-yl)oxy)propan-2-yl)oxy)propan-2-ol (cas: 20324-33-8) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. At room temperature, ethers are pleasant-smelling colourless liquids. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil.Safety of 1-((1-((1-Methoxypropan-2-yl)oxy)propan-2-yl)oxy)propan-2-ol

Volatile profiles of toxigenic and non-toxigenic Aspergillus flavus using SPME for solid phase extraction was written by de Lucca, Anthony J.;Boue, Stephen M.;Carter-Wientjes, Carol H.;Bland, John M.;Bhatnagar, Deepak;Cleveland, Thomas E.. And the article was included in Annals of Agricultural and Environmental Medicine in 2010.Safety of 1-((1-((1-Methoxypropan-2-yl)oxy)propan-2-yl)oxy)propan-2-ol This article mentions the following:

Toxigenic and atoxigenic strains of Aspergillus flavus were grown on potato dextrose agar (PDA) and wetted (23% moisture) sterile, cracked corn for 14 and 21 days, resp. Volatile compounds produced by A. flavus, as well as those present in the PDA controls and sterile cracked maize, were collected using solid-phase micro-extraction (SPME) and identified by gas chromatog./mass spectrometry. Results show that growth substrate had a major impact on the number and type of volatiles detected. Growth on sterile cracked maize produced many more volatiles than did potato dextrose agar. There were also differences observed in the type of volatiles produced between toxigenic and non-toxigenic isolates, as well as between isolates of the same toxigenic grouping. In the experiment, the researchers used many compounds, for example, 1-((1-((1-Methoxypropan-2-yl)oxy)propan-2-yl)oxy)propan-2-ol (cas: 20324-33-8Safety of 1-((1-((1-Methoxypropan-2-yl)oxy)propan-2-yl)oxy)propan-2-ol).

1-((1-((1-Methoxypropan-2-yl)oxy)propan-2-yl)oxy)propan-2-ol (cas: 20324-33-8) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. At room temperature, ethers are pleasant-smelling colourless liquids. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil.Safety of 1-((1-((1-Methoxypropan-2-yl)oxy)propan-2-yl)oxy)propan-2-ol

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Marumoto, Manabu et al. published their research in Macromolecules (Washington, DC, United States) in 2020 | CAS: 111-77-3

2-(2-Methoxyethoxy)ethanol (cas: 111-77-3) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive. Ethers can form hydrogen bonds with other molecules (alcohols, amines, etc.) that have O―H or N―H bonds. The ability to form hydrogen bonds with other compounds makes ethers particularly good solvents for a wide variety of organic compounds and a surprisingly large number of inorganic compounds.Recommanded Product: 111-77-3

Synthesis of Platinum-Containing Conjugated Polymers Having QuinoxP* and Bipyridine Ligands. Chirality Transfer from the Phosphine Ligand to the Polymer Backbone was written by Marumoto, Manabu;Sotani, Taichi;Miyagi, Yu;Yajima, Tatsuo;Sano, Natsuhiro;Sanda, Fumio. And the article was included in Macromolecules (Washington, DC, United States) in 2020.Recommanded Product: 111-77-3 This article mentions the following:

Platinum (Pt)-containing novel conjugated polymers, poly(1-2a)-poly(1-2d) having bipyridine ligands were synthesized by the Sonogashira-Hagihara coupling polymerization of [Pt(4,4′-dibromo-2,2′-bipyridine)((R,R)-2,3-bis(tert-butylmethylphosphino)quinoxaline)(trifluoromethanesulfonate)2] (1) coordinated with 4,4′-dibromo-2,2′-bipyridine/(R,R)-2,3-bis(tert-butylmethylphosphino)quinoxaline [(R,R)-QuinoxP*] and 1,4-diethynylbenzene (2a), 1,4-diethynyl-2,5-bis(heptyloxy)benzene (2b), 1,4-diethynyl-2,5-bis(2-ethylhexyloxy)benzene (2c), and 1,4-diethynyl-2,5-bis(2-(2-methoxyethoxy)ethoxy)benzene (2d). Poly(1-2d) exhibited CD signals derived from (R,R)-QuinoxP* and the conjugated main chain around 290 and 440 nm in DMF, resp. The simulated CD spectroscopic pattern of a low mol. model compound, M1-Pt, agreed well with the observed spectra. The TEM images of poly(1-2d) in the solid state exhibited dispersed patterns with sizes around 10 nm. Concentrated solutions of polymer 1-2d in DMF and CHCl3 partly exhibited patterns assignable to the formation of lyotropic liquid crystals. In the experiment, the researchers used many compounds, for example, 2-(2-Methoxyethoxy)ethanol (cas: 111-77-3Recommanded Product: 111-77-3).

2-(2-Methoxyethoxy)ethanol (cas: 111-77-3) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive. Ethers can form hydrogen bonds with other molecules (alcohols, amines, etc.) that have O―H or N―H bonds. The ability to form hydrogen bonds with other compounds makes ethers particularly good solvents for a wide variety of organic compounds and a surprisingly large number of inorganic compounds.Recommanded Product: 111-77-3

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Liu, Tongqing et al. published their research in Wuli Huaxue Xuebao in 2020 | CAS: 6972-61-8

3-(2,4-Dimethoxyphenyl)acrylic acid (cas: 6972-61-8) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. Ethers feature bent C–O–C linkages. In dimethyl ether, the bond angle is 111° and C–O distances are 141 pm. The barrier to rotation about the C–O bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.Product Details of 6972-61-8

Structure-property relationship of light-responsive wormlike micelles using methoxycinnamate derivatives as light-switchable molecules was written by Liu, Tongqing;Xue, Fangfang;Yi, Ping;Xia, Zhiyu;Dong, Jinfeng;Li, Xuefeng. And the article was included in Wuli Huaxue Xuebao in 2020.Product Details of 6972-61-8 This article mentions the following:

In this work, light-responsive viscoelastic wormlike micelles based on cetyltrimethylammonium hydroxide (CTAOH) and cinnamic acid derivatives, including cinnamic acid (CA), 2-methoxycinnamic acid (2-MCA), 3-methoxycinnamic acid (3-MCA), 4-methoxycinnamic acid (4-MCA), 2,3-dimethoxycinnamic acid (2,3-DMCA), 2,4-dimethoxycinnamic acid (2,4-DMCA), 2,3,4-trimethoxycinnamic acid (2,3,4-DMCA), and 3,4,5-trimethoxycinnamic acid (3,4,5-DMCA), were prepared The effects of the CA derivative structures, especially the position and number of methoxy moieties, on the formation of wormlike micelles were systematically determined The CA derivatives facilitated the formation of long and entangled wormlike micelles. 1H NMR results showed that the CA derivatives participated in the formation of wormlike micelles via insertion of the aromatic moieties into the aggregates. The number of methoxy moieties had a much stronger effect on the viscosity of the wormlike micelle solution than the position of this moiety. The larger the number of methoxy moiety, the smaller was the aggregate. Substituted methoxy moieties increased the steric hindrance between the surfactants and CA mols., thus hindering the formation of large aggregates. However, the position of the methoxy moiety had a predominant effect on the UV-light-induced transition of the wormlike micelles. Specifically, the ortho-methoxy moiety in the CA mols. dramatically enhanced the efficiency of UV-light-induced trans-cis isomerization. For example, the 2-MCA/CTAOH, 3-MCA/CTAOH, and 4-MCA/CTAOH binary systems (90 mmol·L-1/100 mmol·L-1) were gel-like with similar viscosities of around 20 Pa·s, but after UV light irradiation, they were transformed into a fluid with lower viscosity because of the formation of smaller aggregates. However, the irradiation time required for the transition varied significantly, as suggested by the results of viscosity measurements and UV-Vis spectroscopy. The 2-MCA/CTAOH system underwent complete phase transition within 3 h, whereas continuous transitions were observed for the 3-MCA/CTAOH and 4-MCA/CTAOH systems upon irradiation for 24 h. 1H NMR results suggested that the change in the configuration of MCA in the micelles before and after irradiation was the major cause of the abovementioned difference in the phase transition pattern. Initially, all the aromatic moieties of the trans-2-MCA mols. were deeply inserted into the hydrophobic cores of the micelles in a vertical manner, and the ionized carboxyl moiety was located in the palisade layer because of the electrostatic interactions between CTAOH and trans-2-MCA. In contrast, cis-2-MCA was inserted into the micelles in a horizontal manner, and some of the protons in the aromatic moiety were also transferred from the micellar core to the polar palisade layer. Accordingly, the CTAOH and cis-2-MCA mols. were packed loosely in the aggregates, thereby resulting in the formation of spherical micelles. Similar UV-light-induced transitions were observed for the 3-MCA/CTAOH and 4-MCA/CTAOH systems. In the experiment, the researchers used many compounds, for example, 3-(2,4-Dimethoxyphenyl)acrylic acid (cas: 6972-61-8Product Details of 6972-61-8).

3-(2,4-Dimethoxyphenyl)acrylic acid (cas: 6972-61-8) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. Ethers feature bent C–O–C linkages. In dimethyl ether, the bond angle is 111° and C–O distances are 141 pm. The barrier to rotation about the C–O bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.Product Details of 6972-61-8

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Lin, Qiaowei et al. published their research in Physical Chemistry Chemical Physics in 2021 | CAS: 112-49-2

2,5,8,11-Tetraoxadodecane (cas: 112-49-2) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil. Ethers feature bent C–O–C linkages. In dimethyl ether, the bond angle is 111° and C–O distances are 141 pm. The barrier to rotation about the C–O bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.Product Details of 112-49-2

High-performance lithium-sulfur batteries enabled by regulating Li2S deposition was written by Lin, Qiaowei;Huang, Ling;Liu, Wenhua;Li, Zejian;Fang, Ruopian;Wang, Da-Wei;Yang, Quan-Hong;Lv, Wei. And the article was included in Physical Chemistry Chemical Physics in 2021.Product Details of 112-49-2 This article mentions the following:

Lithium-sulfur batteries (LSBs) have received intensive attention in recent years due to their high theor. energy d. derived from the lithiation of sulfur. In the discharge process, sulfur transforms into lithium polysulfides (LiPSs) that dissolve in liquid electrolytes and then into insoluble Li2S precipitated on the electrode surface. The electronically and ionically insulating Li2S leads to two critical issues, including the sluggish reaction kinetics from LiPSs to Li2S and the passivation of the electrode. In this regard, controlling the Li2S deposition is significant for improving the performance of LSBs. In this perspective, we have summarized the recent achievements in regulating the Li2S deposition to enhance the performance of LSBs, including the solution-mediated growth of Li2S, sulfur host enhanced nucleation and catalysis induced kinetic improvement. Moreover, the challenges and possibilities for future research studies are discussed, highlighting the significance of regulating the Li2S deposition to realize the high electrochem. performance and promote the practical uses of LSBs. In the experiment, the researchers used many compounds, for example, 2,5,8,11-Tetraoxadodecane (cas: 112-49-2Product Details of 112-49-2).

2,5,8,11-Tetraoxadodecane (cas: 112-49-2) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil. Ethers feature bent C–O–C linkages. In dimethyl ether, the bond angle is 111° and C–O distances are 141 pm. The barrier to rotation about the C–O bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.Product Details of 112-49-2

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

TenBrink, Ruth E. et al. published their research in Journal of Medicinal Chemistry in 1980 | CAS: 3929-47-3

3-(3,4-Dimethoxyphenyl)propan-1-ol (cas: 3929-47-3) belongs to ethers. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides. Autoxidation is the spontaneous oxidation of a compound in air. In the presence of oxygen, ethers slowly autoxidize to form hydroperoxides and dialkyl peroxides. If concentrated or heated, these peroxides may explode. To prevent such explosions, ethers should be obtained in small quantities, kept in tightly sealed containers, and used promptly.Reference of 3929-47-3

1-[(Ethoxyamino)methyl]-1,3,4,5-tetrahydro-7,8-dimethoxy-2-benzoxepins: a new class of antianaphylactic agents was written by TenBrink, Ruth E.;McCall, John M.;Johnson, Herbert G.. And the article was included in Journal of Medicinal Chemistry in 1980.Reference of 3929-47-3 This article mentions the following:

Benzoxepinylethanolamines I [RR1 = (CH2CH2)2NR2, R2 = 2-MeOC6H4, 2-pyridyl, 4-FC6H4, Me; R = H, R1 = CH2CH2OH] were prepared in 62-92% yields. Reduction of 3,4-(MeO)2C6H3CH2CH2CO2H followed by cyclocondensation with BrCH2CH(OEt)2 gave II (R3 = CH2Br, III). Treating III with HOCH2CH2OH in the presence of Et3N gave II (R3 = CH2OCH2CH2OH) which was esterified by 4-O2NC6H4SO2Cl and stirred with IV (R2 = 2-MeOC6H4) in the presence of Et3N at 25° for 24 h to give I [RR1= (CH2CH2)2NC6H4OMe-2]. Heating III with ClCH2CH2OH in the presence of BaCO3 at 90° for 46 h gave II (R3 = CH2OCH2CH2Cl) which was treated with IV (R2 = 2-pyridyl, 4-FC6H4, Me) or HOCH2CH2NH2 to give the corresponding I. The arylpiperazine compounds I [RR1 = (CH2CH2)2NR2, R2 = 2-MeOC6H4, 2-pyridyl 4-FC6H4] had good activity, i.e., 100%, 94% and 52% inhibition resp., in the rat passive cutaneous anaphylaxis test at 50 mg/kg, p.o. I [RR1 = (CH2CH2)2NMe, R1 = H, R1 = CH2CH2OH] were both inactive. In the experiment, the researchers used many compounds, for example, 3-(3,4-Dimethoxyphenyl)propan-1-ol (cas: 3929-47-3Reference of 3929-47-3).

3-(3,4-Dimethoxyphenyl)propan-1-ol (cas: 3929-47-3) belongs to ethers. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides. Autoxidation is the spontaneous oxidation of a compound in air. In the presence of oxygen, ethers slowly autoxidize to form hydroperoxides and dialkyl peroxides. If concentrated or heated, these peroxides may explode. To prevent such explosions, ethers should be obtained in small quantities, kept in tightly sealed containers, and used promptly.Reference of 3929-47-3

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Gorski, R. J. et al. published their research in Journal of Chromatography in 1991 | CAS: 1132-95-2

1,1-Diisopropoxycyclohexane (cas: 1132-95-2) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive. Ethyl ether is an excellent solvent for extractions and for a wide variety of chemical reactions. It is also used as a volatile starting fluid for diesel engines and gasoline engines in cold weather. Dimethyl ether is used as a spray propellant and refrigerant. Methyl t-butyl ether (MTBE) is a gasoline additive that boosts the octane number and reduces the amount of nitrogen-oxide pollutants in the exhaust. The ethers of ethylene glycol are used as solvents and plasticizers.Reference of 1132-95-2

Estimation and identification of non-polar compounds in clarithromycin bulk drug by high-performance liquid chromatography was written by Gorski, R. J.;Morgan, D. K.;Sarocka, C.;Plasz, A. C.. And the article was included in Journal of Chromatography in 1991.Reference of 1132-95-2 This article mentions the following:

A HPLC method was developed to estimate and identify the non-polar related substances and process impurities that elute after N-dimethyl-N-formyl-6-O-methylerythromycin A in clarithromycin (I) bulk drug. This method separates at least 15 compounds from the I peak. All of the non-polar compounds can be detected at the 0.02% (weight/weight) level. Five bulk drug lots were examined for late-eluting compounds The total related substances ranged from <0.10 to <0.25%. In the experiment, the researchers used many compounds, for example, 1,1-Diisopropoxycyclohexane (cas: 1132-95-2Reference of 1132-95-2).

1,1-Diisopropoxycyclohexane (cas: 1132-95-2) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive. Ethyl ether is an excellent solvent for extractions and for a wide variety of chemical reactions. It is also used as a volatile starting fluid for diesel engines and gasoline engines in cold weather. Dimethyl ether is used as a spray propellant and refrigerant. Methyl t-butyl ether (MTBE) is a gasoline additive that boosts the octane number and reduces the amount of nitrogen-oxide pollutants in the exhaust. The ethers of ethylene glycol are used as solvents and plasticizers.Reference of 1132-95-2

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem