Nojabaee, Maryam et al. published their research in Small in 2020 | CAS: 112-49-2

2,5,8,11-Tetraoxadodecane (cas: 112-49-2) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive. Autoxidation is the spontaneous oxidation of a compound in air. In the presence of oxygen, ethers slowly autoxidize to form hydroperoxides and dialkyl peroxides. If concentrated or heated, these peroxides may explode. To prevent such explosions, ethers should be obtained in small quantities, kept in tightly sealed containers, and used promptly.Recommanded Product: 112-49-2

Solid Electrolyte Interphase Evolution on Lithium Metal in Contact with Glyme-Based Electrolytes was written by Nojabaee, Maryam;Kuester, Kathrin;Starke, Ulrich;Popovic, Jelena;Maier, Joachim. And the article was included in Small in 2020.Recommanded Product: 112-49-2 This article mentions the following:

The formation of a stable solid electrolyte interphase (SEI) is a prerogative for functional lithium metal batteries. Herein, the formation and evolution of such SEI in contact with glyme-based electrolytes is investigated under open circuit voltage and several constant current cycles. An important conclusion of the study is that LixSy species are nonbeneficial SEI components, compared to the Li3N counterpart. In addition, chem. (XPS, XPS) and electrochem. (impedance spectroscopy) evolution of SEI under galvanostatic conditions are comprehensively tracked. In the experiment, the researchers used many compounds, for example, 2,5,8,11-Tetraoxadodecane (cas: 112-49-2Recommanded Product: 112-49-2).

2,5,8,11-Tetraoxadodecane (cas: 112-49-2) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive. Autoxidation is the spontaneous oxidation of a compound in air. In the presence of oxygen, ethers slowly autoxidize to form hydroperoxides and dialkyl peroxides. If concentrated or heated, these peroxides may explode. To prevent such explosions, ethers should be obtained in small quantities, kept in tightly sealed containers, and used promptly.Recommanded Product: 112-49-2

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Sarges, Reinhard et al. published their research in Journal of Medicinal Chemistry in 1996 | CAS: 1877-75-4

2-(4-Methoxyphenoxy)acetic acid (cas: 1877-75-4) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive. At room temperature, ethers are pleasant-smelling colourless liquids. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil.SDS of cas: 1877-75-4

Glucose transport-enhancing and hypoglycemic activity of 2-methyl-2-phenoxy-3-phenylpropanoic acids was written by Sarges, Reinhard;Hank, Richard F.;Blake, James F.;Bordner, Jon;Bussolotti, Donald L.;Hargrove, Diane M.;Treadway, Judith L.;Gibbs, E. Michael. And the article was included in Journal of Medicinal Chemistry in 1996.SDS of cas: 1877-75-4 This article mentions the following:

A series of 2-phenoxy-3-phenylpropanoic acids has been prepared which contains many potent hypoglycemic agents as demonstrated by assessing glucose lowering in ob/ob mice. Some compounds normalize plasma glucose in this diabetic model at doses of approx. 1 mg/kg. The mechanism of action of these drugs may involve enhanced glucose transport, especially in fat cells, but the compounds do not stimulate GLUT4 translocation and do not increase the levels of GLUT1 or GLUT4 in vivo. Thus, these compounds may enhance the intrinsic activity of the glucose transporter GLUT1 or GLUT4. Some compounds also modestly decrease hepatocyte gluconeogenesis in vitro, but this is not likely to be a major contributor to the hypoglycemic effect observed in vivo. Likewise, a modest decrease in food consumption observed with some of these compounds was shown by a pair-feeding experiment not to be the primary cause of the hypoglycemia observed In the experiment, the researchers used many compounds, for example, 2-(4-Methoxyphenoxy)acetic acid (cas: 1877-75-4SDS of cas: 1877-75-4).

2-(4-Methoxyphenoxy)acetic acid (cas: 1877-75-4) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive. At room temperature, ethers are pleasant-smelling colourless liquids. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil.SDS of cas: 1877-75-4

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

DeGreeff, Lauryn E. et al. published their research in Forensic Chemistry in 2021 | CAS: 111-77-3

2-(2-Methoxyethoxy)ethanol (cas: 111-77-3) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil. The unique properties of ethers (i.e., that they are strongly polar, with nonbonding electron pairs but no hydroxyl group) enhance the formation and use of many reagents. For example, Grignard reagents cannot form unless an ether is present to share its lone pair of electrons with the magnesium atom. Complexation of the magnesium atom stabilizes the Grignard reagent and helps to keep it in solution.Application In Synthesis of 2-(2-Methoxyethoxy)ethanol

Headspace analysis of ammonium nitrate variants and the effects of differing vapor profiles on canine detection was written by DeGreeff, Lauryn E.;Peranich, Kimberly. And the article was included in Forensic Chemistry in 2021.Application In Synthesis of 2-(2-Methoxyethoxy)ethanol This article mentions the following:

Canines continue to be one of the most frequently deployed tool in the detection of explosives, and particularly homemade explosives (HMEs), in part, due to the ease in training to new HME materials as threats arise. The majority of HMEs encountered contain ammonium nitrate (AN), and previous research has measured the release of ammonia from AN, and found that the ammonia vapor concentration varies with form, purity, and environment, but this is has not been correlated to canine detection proficiency. In this research, the headspace anal. of AN variants was carried out using solid phase microextraction (SPME) with gas chromatog./mass spectrometry (GC/MS). Ammonia vapor from the AN was extracted using on-fiber derivatization, while the presence of other volatiles in the headspace of these variants were also characterized by a traditional SPME extraction These results were correlated to canine testing, where canines previously trained in odor detection were provided laboratory-grade AN for odor imprinting, after which they were to locate other AN variants in a series of simple detection tasks. Headspace anal. showed variations in both the amount of ammonia as well as other volatile compounds in the headspace of the various AN samples, as well as changes in the vapor profiles due to changing environmental conditions. Canine data indicated that the differences in the headspace profiles of the samples may confound detection when canines were trained on laboratory-grade AN alone, while increased ammonia vapor availability from certain samples may have improved detection by this group of canines. In the experiment, the researchers used many compounds, for example, 2-(2-Methoxyethoxy)ethanol (cas: 111-77-3Application In Synthesis of 2-(2-Methoxyethoxy)ethanol).

2-(2-Methoxyethoxy)ethanol (cas: 111-77-3) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil. The unique properties of ethers (i.e., that they are strongly polar, with nonbonding electron pairs but no hydroxyl group) enhance the formation and use of many reagents. For example, Grignard reagents cannot form unless an ether is present to share its lone pair of electrons with the magnesium atom. Complexation of the magnesium atom stabilizes the Grignard reagent and helps to keep it in solution.Application In Synthesis of 2-(2-Methoxyethoxy)ethanol

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Zhang, Haojie et al. published their research in Journal of Materials Chemistry A: Materials for Energy and Sustainability in 2017 | CAS: 605-94-7

2,3-Dimethoxy-5-methylcyclohexa-2,5-diene-1,4-dione (cas: 605-94-7) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. But ether is more polar than alkenes. Autoxidation is the spontaneous oxidation of a compound in air. In the presence of oxygen, ethers slowly autoxidize to form hydroperoxides and dialkyl peroxides. If concentrated or heated, these peroxides may explode. To prevent such explosions, ethers should be obtained in small quantities, kept in tightly sealed containers, and used promptly.Safety of 2,3-Dimethoxy-5-methylcyclohexa-2,5-diene-1,4-dione

A highly stable and scalable photosynthetic reaction center-graphene hybrid electrode system for biomimetic solar energy transduction was written by Zhang, Haojie;Carey, Anne-Marie;Jeon, Ki-Wan;Liu, Minghui;Murrell, Travis D.;Locsin, Joshua;Lin, Su;Yan, Hao;Woodbury, Neal;Seo, Dong-Kyun. And the article was included in Journal of Materials Chemistry A: Materials for Energy and Sustainability in 2017.Safety of 2,3-Dimethoxy-5-methylcyclohexa-2,5-diene-1,4-dione This article mentions the following:

A photosynthetic reaction center (RC)-based electrode system is one of the most promising biomimetic approaches for solar energy transduction which is a renewable and environment-friendly source of energy. However, the instability of RCs in a non-cellular environment and the unfeasible scalability of electrode materials hamper the promising application of these systems. Herein, we report a highly stable and scalable RC-electrode system in which RCs are directly immobilized on a flexible and transparent mercapto reduced graphene oxide (mRGO) electrode. RCs immobilized on a mRGO film retain their photoactivity after twenty-week storage under darkness and even after 24 h continuous illumination at room temperature under aerobic conditions. The remarkable stability and mech. flexibility of our system offer great potential for the development of a flexible RC-based biomimetic device for solar energy transduction. In the experiment, the researchers used many compounds, for example, 2,3-Dimethoxy-5-methylcyclohexa-2,5-diene-1,4-dione (cas: 605-94-7Safety of 2,3-Dimethoxy-5-methylcyclohexa-2,5-diene-1,4-dione).

2,3-Dimethoxy-5-methylcyclohexa-2,5-diene-1,4-dione (cas: 605-94-7) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. But ether is more polar than alkenes. Autoxidation is the spontaneous oxidation of a compound in air. In the presence of oxygen, ethers slowly autoxidize to form hydroperoxides and dialkyl peroxides. If concentrated or heated, these peroxides may explode. To prevent such explosions, ethers should be obtained in small quantities, kept in tightly sealed containers, and used promptly.Safety of 2,3-Dimethoxy-5-methylcyclohexa-2,5-diene-1,4-dione

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Onoda, Mitsuki et al. published their research in ChemistrySelect in 2022 | CAS: 105-13-5

(4-Methoxyphenyl)methanol (cas: 105-13-5) belongs to ethers. The oxygen atom in ethers are more electronegative than carbon, thus the hydrogens which are alpha to the ethers are more acidic than the simple hydrocarbons. Ethers feature bent C–O–C linkages. In dimethyl ether, the bond angle is 111° and C–O distances are 141 pm. The barrier to rotation about the C–O bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.Safety of (4-Methoxyphenyl)methanol

Dehydrogenative Esterification and Dehydrative Etherification by Coupling of Primary Alcohols Based on Catalytic Function Switching of an Iridium Complex was written by Onoda, Mitsuki;Fujita, Ken-ichi. And the article was included in ChemistrySelect in 2022.Safety of (4-Methoxyphenyl)methanol This article mentions the following:

In this study, a new catalytic function switching system: not only dehydrogenative esterification but also dehydrative etherification under environmentally friendly conditions were accomplished by the employment of a single iridium catalyst based on catalytic function switching was successfully developed. Using benzyl alc. as a starting material, the esterification product, benzyl benzoate, and the etherification product, dibenzyl ether, were obtained in 92% and 89% yields, resp., by employing same iridium catalyst precursor bearing a dihydroxybipyridine ligand, under optimized conditions. In the experiment, the researchers used many compounds, for example, (4-Methoxyphenyl)methanol (cas: 105-13-5Safety of (4-Methoxyphenyl)methanol).

(4-Methoxyphenyl)methanol (cas: 105-13-5) belongs to ethers. The oxygen atom in ethers are more electronegative than carbon, thus the hydrogens which are alpha to the ethers are more acidic than the simple hydrocarbons. Ethers feature bent C–O–C linkages. In dimethyl ether, the bond angle is 111° and C–O distances are 141 pm. The barrier to rotation about the C–O bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.Safety of (4-Methoxyphenyl)methanol

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Gao, En et al. published their research in Journal of Natural Products in 2017 | CAS: 3929-47-3

3-(3,4-Dimethoxyphenyl)propan-1-ol (cas: 3929-47-3) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. Ethyl ether is an excellent solvent for extractions and for a wide variety of chemical reactions. It is also used as a volatile starting fluid for diesel engines and gasoline engines in cold weather. Dimethyl ether is used as a spray propellant and refrigerant. Methyl t-butyl ether (MTBE) is a gasoline additive that boosts the octane number and reduces the amount of nitrogen-oxide pollutants in the exhaust. The ethers of ethylene glycol are used as solvents and plasticizers.COA of Formula: C11H16O3

Bioactive Asarone-Derived Phenylpropanoids from the Rhizome of Acorus tatarinowii Schott was written by Gao, En;Zhou, Zheng-Qun;Zou, Jian;Yu, Yang;Feng, Xiao-Lin;Chen, Guo-Dong;He, Rong-Rong;Yao, Xin-Sheng;Gao, Hao. And the article was included in Journal of Natural Products in 2017.COA of Formula: C11H16O3 This article mentions the following:

Eight new (1a/1b (I,II), 2a, 3a, 4a/4b, and 5a/5b) and seven known (2b, 3b, and 6-10) asarone-derived phenylpropanoids, a known asarone-derived lignan (12), and four known lignan analogs (11) and (13-15) were isolated from the rhizome of Acorus tatarinowii Schott. The structures were elucidated via comprehensive spectroscopic analyses, modified Mosher’s method, and quantum chem. calculations Compounds I-8 were present as enantiomers, and I-5 were successfully resolved via chiral-phase HPLC. Compounds I/II were the first cases of asarone-derived phenylpropanoids with an iso-Pr C-3 side-chain tethered to a benzene core from nature. Hypoglycemic, antioxidant, and AChE inhibitory activities of I-15 were assessed by the α-glucosidase inhibitory, ORAC, DPPH radical scavenging, and AChE inhibitory assays, resp. All compounds except 3a showed α-glucosidase inhibitory activity. Compound 3b has the highest α-glucosidase inhibitory effect with an IC50 of 80.6 μM (pos. drug acarbose IC50 of 442.4 μM). In the antioxidant assays, compounds 13-15 exhibited ORAC and DPPH radical scavenging activities. The results of the AChE inhibitory assay indicated that all compounds exhibited weak AChE inhibitory activities. In the experiment, the researchers used many compounds, for example, 3-(3,4-Dimethoxyphenyl)propan-1-ol (cas: 3929-47-3COA of Formula: C11H16O3).

3-(3,4-Dimethoxyphenyl)propan-1-ol (cas: 3929-47-3) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. Ethyl ether is an excellent solvent for extractions and for a wide variety of chemical reactions. It is also used as a volatile starting fluid for diesel engines and gasoline engines in cold weather. Dimethyl ether is used as a spray propellant and refrigerant. Methyl t-butyl ether (MTBE) is a gasoline additive that boosts the octane number and reduces the amount of nitrogen-oxide pollutants in the exhaust. The ethers of ethylene glycol are used as solvents and plasticizers.COA of Formula: C11H16O3

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Liu, Tongqing et al. published their research in Wuli Huaxue Xuebao in 2020 | CAS: 6972-61-8

3-(2,4-Dimethoxyphenyl)acrylic acid (cas: 6972-61-8) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. Ethers feature bent C–O–C linkages. In dimethyl ether, the bond angle is 111° and C–O distances are 141 pm. The barrier to rotation about the C–O bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.Product Details of 6972-61-8

Structure-property relationship of light-responsive wormlike micelles using methoxycinnamate derivatives as light-switchable molecules was written by Liu, Tongqing;Xue, Fangfang;Yi, Ping;Xia, Zhiyu;Dong, Jinfeng;Li, Xuefeng. And the article was included in Wuli Huaxue Xuebao in 2020.Product Details of 6972-61-8 This article mentions the following:

In this work, light-responsive viscoelastic wormlike micelles based on cetyltrimethylammonium hydroxide (CTAOH) and cinnamic acid derivatives, including cinnamic acid (CA), 2-methoxycinnamic acid (2-MCA), 3-methoxycinnamic acid (3-MCA), 4-methoxycinnamic acid (4-MCA), 2,3-dimethoxycinnamic acid (2,3-DMCA), 2,4-dimethoxycinnamic acid (2,4-DMCA), 2,3,4-trimethoxycinnamic acid (2,3,4-DMCA), and 3,4,5-trimethoxycinnamic acid (3,4,5-DMCA), were prepared The effects of the CA derivative structures, especially the position and number of methoxy moieties, on the formation of wormlike micelles were systematically determined The CA derivatives facilitated the formation of long and entangled wormlike micelles. 1H NMR results showed that the CA derivatives participated in the formation of wormlike micelles via insertion of the aromatic moieties into the aggregates. The number of methoxy moieties had a much stronger effect on the viscosity of the wormlike micelle solution than the position of this moiety. The larger the number of methoxy moiety, the smaller was the aggregate. Substituted methoxy moieties increased the steric hindrance between the surfactants and CA mols., thus hindering the formation of large aggregates. However, the position of the methoxy moiety had a predominant effect on the UV-light-induced transition of the wormlike micelles. Specifically, the ortho-methoxy moiety in the CA mols. dramatically enhanced the efficiency of UV-light-induced trans-cis isomerization. For example, the 2-MCA/CTAOH, 3-MCA/CTAOH, and 4-MCA/CTAOH binary systems (90 mmol·L-1/100 mmol·L-1) were gel-like with similar viscosities of around 20 Pa·s, but after UV light irradiation, they were transformed into a fluid with lower viscosity because of the formation of smaller aggregates. However, the irradiation time required for the transition varied significantly, as suggested by the results of viscosity measurements and UV-Vis spectroscopy. The 2-MCA/CTAOH system underwent complete phase transition within 3 h, whereas continuous transitions were observed for the 3-MCA/CTAOH and 4-MCA/CTAOH systems upon irradiation for 24 h. 1H NMR results suggested that the change in the configuration of MCA in the micelles before and after irradiation was the major cause of the abovementioned difference in the phase transition pattern. Initially, all the aromatic moieties of the trans-2-MCA mols. were deeply inserted into the hydrophobic cores of the micelles in a vertical manner, and the ionized carboxyl moiety was located in the palisade layer because of the electrostatic interactions between CTAOH and trans-2-MCA. In contrast, cis-2-MCA was inserted into the micelles in a horizontal manner, and some of the protons in the aromatic moiety were also transferred from the micellar core to the polar palisade layer. Accordingly, the CTAOH and cis-2-MCA mols. were packed loosely in the aggregates, thereby resulting in the formation of spherical micelles. Similar UV-light-induced transitions were observed for the 3-MCA/CTAOH and 4-MCA/CTAOH systems. In the experiment, the researchers used many compounds, for example, 3-(2,4-Dimethoxyphenyl)acrylic acid (cas: 6972-61-8Product Details of 6972-61-8).

3-(2,4-Dimethoxyphenyl)acrylic acid (cas: 6972-61-8) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. Ethers feature bent C–O–C linkages. In dimethyl ether, the bond angle is 111° and C–O distances are 141 pm. The barrier to rotation about the C–O bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.Product Details of 6972-61-8

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Lin, Qiaowei et al. published their research in Physical Chemistry Chemical Physics in 2021 | CAS: 112-49-2

2,5,8,11-Tetraoxadodecane (cas: 112-49-2) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil. Ethers feature bent C–O–C linkages. In dimethyl ether, the bond angle is 111° and C–O distances are 141 pm. The barrier to rotation about the C–O bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.Product Details of 112-49-2

High-performance lithium-sulfur batteries enabled by regulating Li2S deposition was written by Lin, Qiaowei;Huang, Ling;Liu, Wenhua;Li, Zejian;Fang, Ruopian;Wang, Da-Wei;Yang, Quan-Hong;Lv, Wei. And the article was included in Physical Chemistry Chemical Physics in 2021.Product Details of 112-49-2 This article mentions the following:

Lithium-sulfur batteries (LSBs) have received intensive attention in recent years due to their high theor. energy d. derived from the lithiation of sulfur. In the discharge process, sulfur transforms into lithium polysulfides (LiPSs) that dissolve in liquid electrolytes and then into insoluble Li2S precipitated on the electrode surface. The electronically and ionically insulating Li2S leads to two critical issues, including the sluggish reaction kinetics from LiPSs to Li2S and the passivation of the electrode. In this regard, controlling the Li2S deposition is significant for improving the performance of LSBs. In this perspective, we have summarized the recent achievements in regulating the Li2S deposition to enhance the performance of LSBs, including the solution-mediated growth of Li2S, sulfur host enhanced nucleation and catalysis induced kinetic improvement. Moreover, the challenges and possibilities for future research studies are discussed, highlighting the significance of regulating the Li2S deposition to realize the high electrochem. performance and promote the practical uses of LSBs. In the experiment, the researchers used many compounds, for example, 2,5,8,11-Tetraoxadodecane (cas: 112-49-2Product Details of 112-49-2).

2,5,8,11-Tetraoxadodecane (cas: 112-49-2) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil. Ethers feature bent C–O–C linkages. In dimethyl ether, the bond angle is 111° and C–O distances are 141 pm. The barrier to rotation about the C–O bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.Product Details of 112-49-2

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

TenBrink, Ruth E. et al. published their research in Journal of Medicinal Chemistry in 1980 | CAS: 3929-47-3

3-(3,4-Dimethoxyphenyl)propan-1-ol (cas: 3929-47-3) belongs to ethers. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides. Autoxidation is the spontaneous oxidation of a compound in air. In the presence of oxygen, ethers slowly autoxidize to form hydroperoxides and dialkyl peroxides. If concentrated or heated, these peroxides may explode. To prevent such explosions, ethers should be obtained in small quantities, kept in tightly sealed containers, and used promptly.Reference of 3929-47-3

1-[(Ethoxyamino)methyl]-1,3,4,5-tetrahydro-7,8-dimethoxy-2-benzoxepins: a new class of antianaphylactic agents was written by TenBrink, Ruth E.;McCall, John M.;Johnson, Herbert G.. And the article was included in Journal of Medicinal Chemistry in 1980.Reference of 3929-47-3 This article mentions the following:

Benzoxepinylethanolamines I [RR1 = (CH2CH2)2NR2, R2 = 2-MeOC6H4, 2-pyridyl, 4-FC6H4, Me; R = H, R1 = CH2CH2OH] were prepared in 62-92% yields. Reduction of 3,4-(MeO)2C6H3CH2CH2CO2H followed by cyclocondensation with BrCH2CH(OEt)2 gave II (R3 = CH2Br, III). Treating III with HOCH2CH2OH in the presence of Et3N gave II (R3 = CH2OCH2CH2OH) which was esterified by 4-O2NC6H4SO2Cl and stirred with IV (R2 = 2-MeOC6H4) in the presence of Et3N at 25° for 24 h to give I [RR1= (CH2CH2)2NC6H4OMe-2]. Heating III with ClCH2CH2OH in the presence of BaCO3 at 90° for 46 h gave II (R3 = CH2OCH2CH2Cl) which was treated with IV (R2 = 2-pyridyl, 4-FC6H4, Me) or HOCH2CH2NH2 to give the corresponding I. The arylpiperazine compounds I [RR1 = (CH2CH2)2NR2, R2 = 2-MeOC6H4, 2-pyridyl 4-FC6H4] had good activity, i.e., 100%, 94% and 52% inhibition resp., in the rat passive cutaneous anaphylaxis test at 50 mg/kg, p.o. I [RR1 = (CH2CH2)2NMe, R1 = H, R1 = CH2CH2OH] were both inactive. In the experiment, the researchers used many compounds, for example, 3-(3,4-Dimethoxyphenyl)propan-1-ol (cas: 3929-47-3Reference of 3929-47-3).

3-(3,4-Dimethoxyphenyl)propan-1-ol (cas: 3929-47-3) belongs to ethers. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides. Autoxidation is the spontaneous oxidation of a compound in air. In the presence of oxygen, ethers slowly autoxidize to form hydroperoxides and dialkyl peroxides. If concentrated or heated, these peroxides may explode. To prevent such explosions, ethers should be obtained in small quantities, kept in tightly sealed containers, and used promptly.Reference of 3929-47-3

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Gorski, R. J. et al. published their research in Journal of Chromatography in 1991 | CAS: 1132-95-2

1,1-Diisopropoxycyclohexane (cas: 1132-95-2) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive. Ethyl ether is an excellent solvent for extractions and for a wide variety of chemical reactions. It is also used as a volatile starting fluid for diesel engines and gasoline engines in cold weather. Dimethyl ether is used as a spray propellant and refrigerant. Methyl t-butyl ether (MTBE) is a gasoline additive that boosts the octane number and reduces the amount of nitrogen-oxide pollutants in the exhaust. The ethers of ethylene glycol are used as solvents and plasticizers.Reference of 1132-95-2

Estimation and identification of non-polar compounds in clarithromycin bulk drug by high-performance liquid chromatography was written by Gorski, R. J.;Morgan, D. K.;Sarocka, C.;Plasz, A. C.. And the article was included in Journal of Chromatography in 1991.Reference of 1132-95-2 This article mentions the following:

A HPLC method was developed to estimate and identify the non-polar related substances and process impurities that elute after N-dimethyl-N-formyl-6-O-methylerythromycin A in clarithromycin (I) bulk drug. This method separates at least 15 compounds from the I peak. All of the non-polar compounds can be detected at the 0.02% (weight/weight) level. Five bulk drug lots were examined for late-eluting compounds The total related substances ranged from <0.10 to <0.25%. In the experiment, the researchers used many compounds, for example, 1,1-Diisopropoxycyclohexane (cas: 1132-95-2Reference of 1132-95-2).

1,1-Diisopropoxycyclohexane (cas: 1132-95-2) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive. Ethyl ether is an excellent solvent for extractions and for a wide variety of chemical reactions. It is also used as a volatile starting fluid for diesel engines and gasoline engines in cold weather. Dimethyl ether is used as a spray propellant and refrigerant. Methyl t-butyl ether (MTBE) is a gasoline additive that boosts the octane number and reduces the amount of nitrogen-oxide pollutants in the exhaust. The ethers of ethylene glycol are used as solvents and plasticizers.Reference of 1132-95-2

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem