Jeong, Dahyun et al. published their research in Advanced Functional Materials in 2022 | CAS: 111-77-3

2-(2-Methoxyethoxy)ethanol (cas: 111-77-3) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. At room temperature, ethers are pleasant-smelling colourless liquids. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil.Electric Literature of C5H12O3

High-Performance n-Type Organic Electrochemical Transistors Enabled by Aqueous Solution Processing of Amphiphilicity-Driven Polymer Assembly was written by Jeong, Dahyun;Jo, Il-Young;Lee, Seungjin;Kim, Ji Hwan;Kim, Youngseok;Kim, Donguk;Reynolds, John R.;Yoon, Myung-Han;Kim, Bumjoon J.. And the article was included in Advanced Functional Materials in 2022.Electric Literature of C5H12O3 This article mentions the following:

Despite the growing attention on organic electrochem. transistors (OECTs), most research has focused on the design of p-type active materials, and the number of high-performance n-type materials is limited. Herein, a series of naphthalene diimide-based polymers incorporated with asym. branched oligo(ethylene glycol) (OEG) side chains are developed to enable green-solvent-processed, high-performance n-type OECTs. The branched OEG side chains afford sufficient solubility in eco-friendly ethanol/water solvent mixtures Importantly, taking advantage of the amphiphilic nature of OEG-based polymers, ethanol/water solvents selectively solvate hydrophilic OEG side chains, while producing assembled π-π stacks of hydrophobic backbones. This enables highly ordered polymer packing with a preferential edge-on orientation, and thus excellent lateral charge transport. In particular, the fine-tuned OEG side chains of P(NDIMTEG-T) provide compact backbone packing, effective polaron generation, and superior electrochem. stability with optimized swelling capability. The resultant n-type OECT shows the best elec./electrochem. performance in the family, represented by a high transconductance (gm) of 0.38 S cm-1 and a large figure-of-merit (μC*) of 0.56 F V-1 cm-1 s-1. This study demonstrates the use of aqueous processing in OECTs, for the first time, and suggests important guidelines for the design of n-type organic mixed ionic-electronic conductors with excellent OECT characteristics. In the experiment, the researchers used many compounds, for example, 2-(2-Methoxyethoxy)ethanol (cas: 111-77-3Electric Literature of C5H12O3).

2-(2-Methoxyethoxy)ethanol (cas: 111-77-3) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. At room temperature, ethers are pleasant-smelling colourless liquids. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil.Electric Literature of C5H12O3

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Zhao, Wei-Cheng et al. published their research in Tetrahedron in 2021 | CAS: 16356-02-8

1,4-Dimethoxy-2-butyne (cas: 16356-02-8) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides.Electric Literature of C6H10O2

Palladium-catalyzed desymmetric [2+2+2] cycloaddition of 1,6-enyne and alkyne was written by Zhao, Wei-Cheng;Wang, Xin;Feng, Juhua;Tian, Ping;He, Zhi-Tao. And the article was included in Tetrahedron in 2021.Electric Literature of C6H10O2 This article mentions the following:

A novel and straightforward palladium-catalyzed desym. [2+2+2] cycloaddition reaction of alkyne-tethered cyclohexadienone and internal alkyne is established. Widely existing fused tricyclic hydronaphthofuran and hydronaphthopyrrole frameworks are prepared diastereoselectively in moderate to excellent yields. One-step aromatization process provides a new and facile access to important benzene-containing tricycles from above cycloaddition products. In the experiment, the researchers used many compounds, for example, 1,4-Dimethoxy-2-butyne (cas: 16356-02-8Electric Literature of C6H10O2).

1,4-Dimethoxy-2-butyne (cas: 16356-02-8) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides.Electric Literature of C6H10O2

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Ekebergh, Andreas et al. published their research in Organic & Biomolecular Chemistry in 2015 | CAS: 156635-90-4

(4-((4-Methoxybenzyl)oxy)phenyl)boronic acid (cas: 156635-90-4) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides.Category: ethers-buliding-blocks

Exploring a cascade Heck-Suzuki reaction based route to kinase inhibitors using design of experiments was written by Ekebergh, Andreas;Lingblom, Christine;Sandin, Peter;Wenneraas, Christine;Maartensson, Jerker. And the article was included in Organic & Biomolecular Chemistry in 2015.Category: ethers-buliding-blocks This article mentions the following:

Design of Experiments (DoE) was used to optimize a diversity oriented palladium catalyzed cascade Heck-Suzuki reaction for the construction of 3-alkenyl substituted cyclopenta[b]indole compounds The obtained DoE model revealed a reaction highly dependent on the ligand. Guided by the model, an optimal ligand was chosen that selectively delivered the desired products in high yields. The conditions were applicable with a variety of boronic acids and were used to synthesize a library of 3-alkenyl derivatized compounds Focusing on inhibition of kinases relevant for combating melanoma, the library was used in an initial structure-activity survey. In line with the observed kinase inhibition, cellular studies revealed one of the more promising derivatives to inhibit cell proliferation via an apoptotic mechanism. In the experiment, the researchers used many compounds, for example, (4-((4-Methoxybenzyl)oxy)phenyl)boronic acid (cas: 156635-90-4Category: ethers-buliding-blocks).

(4-((4-Methoxybenzyl)oxy)phenyl)boronic acid (cas: 156635-90-4) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides.Category: ethers-buliding-blocks

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Yeh, Chien-Hung et al. published their research in Organic & Biomolecular Chemistry in 2014 | CAS: 16356-02-8

1,4-Dimethoxy-2-butyne (cas: 16356-02-8) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. But ether is more polar than alkenes. At room temperature, ethers are pleasant-smelling colourless liquids. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil.Safety of 1,4-Dimethoxy-2-butyne

RhIII-catalyzed dual directing group assisted sterically hindered C-H bond activation: a unique route to meta and ortho substituted benzofurans was written by Yeh, Chien-Hung;Chen, Wei-Chen;Gandeepan, Parthasarathy;Hong, Ya-Chun;Shih, Cheng-Hung;Cheng, Chien-Hong. And the article was included in Organic & Biomolecular Chemistry in 2014.Safety of 1,4-Dimethoxy-2-butyne This article mentions the following:

A new strategy for the synthesis of highly substituted benzofurans, e.g., I (X-rays single crystal structure shown), from meta-substituted hydroxybenzenes and alkynes via a rhodium(III)-catalyzed activation of a sterically hindered C-H bond is demonstrated. A possible mechanism involving dual directing group assisted ortho C-H bond activation is proposed. In the experiment, the researchers used many compounds, for example, 1,4-Dimethoxy-2-butyne (cas: 16356-02-8Safety of 1,4-Dimethoxy-2-butyne).

1,4-Dimethoxy-2-butyne (cas: 16356-02-8) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. But ether is more polar than alkenes. At room temperature, ethers are pleasant-smelling colourless liquids. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil.Safety of 1,4-Dimethoxy-2-butyne

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Zhou, Yanmei et al. published their research in Tetrahedron in 2017 | CAS: 5367-32-8

3-Methyl-4-nitroanisole (cas: 5367-32-8) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. But ether is more polar than alkenes. At room temperature, ethers are pleasant-smelling colourless liquids. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil.Category: ethers-buliding-blocks

Water as a hydrogen source in palladium-catalyzed reduction and reductive amination of nitroarenes mediated by diboronic acid was written by Zhou, Yanmei;Zhou, Haifeng;Liu, Sensheng;Pi, Danwei;Shen, Guanshuo. And the article was included in Tetrahedron in 2017.Category: ethers-buliding-blocks This article mentions the following:

An unprecedented palladium-catalyzed chemoselective reduction and reductive amination of nitroarenes with water as a hydrogen source mediated by diboronic acid is discovered. A series of aryl amines containing various reducible functional groups were obtained in good to excellent yields. In the experiment, the researchers used many compounds, for example, 3-Methyl-4-nitroanisole (cas: 5367-32-8Category: ethers-buliding-blocks).

3-Methyl-4-nitroanisole (cas: 5367-32-8) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. But ether is more polar than alkenes. At room temperature, ethers are pleasant-smelling colourless liquids. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil.Category: ethers-buliding-blocks

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Shin, Kyung-ha et al. published their research in Bulletin of the Korean Chemical Society in 2009 | CAS: 66943-05-3

1,4,7,10-Tetraoxa-13-azacyclopentadecane (cas: 66943-05-3) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. Ethers can form hydrogen bonds with other molecules (alcohols, amines, etc.) that have O―H or N―H bonds. The ability to form hydrogen bonds with other compounds makes ethers particularly good solvents for a wide variety of organic compounds and a surprisingly large number of inorganic compounds.Recommanded Product: 1,4,7,10-Tetraoxa-13-azacyclopentadecane

pH-dependent complexation between pyridinyl-azacrown ether and amino-porphyrin was written by Shin, Kyung-ha;Shin, Eun Ju. And the article was included in Bulletin of the Korean Chemical Society in 2009.Recommanded Product: 1,4,7,10-Tetraoxa-13-azacyclopentadecane This article mentions the following:

Change of mode for the complex formation between amino-functionalized porphyrin ZnTTP-NH2 and pyridine-appended crown ether AzC-Py in the absence and presence of CF3COOH were investigated using absorption and fluorescence spectroscopy. To observe dual mode for complexation controlled by pH, axial coordination of pyridine ligand on zinc porphyrin and host-guest complexation between azacrown ether and ammonium cation was chosen. According to this respect, amino-functionalized porphyrin ZnTTP-NH2 and pyridine-appended crown ether AzC-Py were prepared In normal condition, pyridine moiety of AzC-Py coordinates axially on ZnTTP-NH2. With addition of AzC-Py, absorption and fluorescence spectra of ZnTTP-NH2 were greatly red-shifted and fluorescence intensity of ZnTTP-NH2 was remarkably increased. However, in acidic condition, ZnTTP-NH3+ was formed by the protonation of ZnTTP-NH2. Therefore, ammonium ion moiety of ZnTTP-NH3+ binds into azacrown ether cavity of AzC-Py, but axial coordination of pyridine appended crown ether on zinc porphyrin does not take place. In acidic condition, absorption and fluorescence spectra of ZnTTP-NH2 were only slightly changed with addition of AzC-Py. This shows the pH-controllable dual-mode complexation between zinc porphyrin and azacrown ether. In the experiment, the researchers used many compounds, for example, 1,4,7,10-Tetraoxa-13-azacyclopentadecane (cas: 66943-05-3Recommanded Product: 1,4,7,10-Tetraoxa-13-azacyclopentadecane).

1,4,7,10-Tetraoxa-13-azacyclopentadecane (cas: 66943-05-3) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. Ethers can form hydrogen bonds with other molecules (alcohols, amines, etc.) that have O―H or N―H bonds. The ability to form hydrogen bonds with other compounds makes ethers particularly good solvents for a wide variety of organic compounds and a surprisingly large number of inorganic compounds.Recommanded Product: 1,4,7,10-Tetraoxa-13-azacyclopentadecane

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Neyyappadath, Rifahath M. et al. published their research in European Journal of Organic Chemistry in 2019 | CAS: 5367-32-8

3-Methyl-4-nitroanisole (cas: 5367-32-8) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil. Ethers feature bent C–O–C linkages. In dimethyl ether, the bond angle is 111° and C–O distances are 141 pm. The barrier to rotation about the C–O bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.HPLC of Formula: 5367-32-8

Synthesis of Fused Indoline-Cyclobutanone Derivatives via an Intramolecular [2+2] Cycloaddition was written by Neyyappadath, Rifahath M.;Greenhalgh, Mark D.;Cordes, David B.;Slawin, Alexandra M. Z.;Smith, Andrew D.. And the article was included in European Journal of Organic Chemistry in 2019.HPLC of Formula: 5367-32-8 This article mentions the following:

Enamines such as I, generated in situ from (allylamino)phenylacetic acids by ozonolysis followed by Wittig reactions with α-(triphenylphosphoranylidene)ketones, underwent diastereoselective intramol. [2+2]-cycloaddition reactions mediated by pivaloyl chloride and i-Pr2NEt in CHCl3 to give cyclobutaindolinones (fused indoline-cyclobutanones) such as II. An allylphenylacetic acid underwent an analogous cycloaddition to form a cyclobutaindanone, providing evidence for the presence of ketene intermediates in the observed [2+2]-cycloadditions The formation of a ketene intermediate in this process is significant as the reaction conditions employed are analogous to those commonly used in tertiary amine Lewis base catalysis, where the potential intermediacy of ketenes is an important consideration that is often overlooked. In the experiment, the researchers used many compounds, for example, 3-Methyl-4-nitroanisole (cas: 5367-32-8HPLC of Formula: 5367-32-8).

3-Methyl-4-nitroanisole (cas: 5367-32-8) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil. Ethers feature bent C–O–C linkages. In dimethyl ether, the bond angle is 111° and C–O distances are 141 pm. The barrier to rotation about the C–O bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.HPLC of Formula: 5367-32-8

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Gong, Jia-shun et al. published their research in Journal of Analytical and Applied Pyrolysis in 2012 | CAS: 20324-33-8

1-((1-((1-Methoxypropan-2-yl)oxy)propan-2-yl)oxy)propan-2-ol (cas: 20324-33-8) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. But on the other hand, ethers undergo cleavage by reaction with acids. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides.Recommanded Product: 20324-33-8

Characterization of the chemical differences between solvent extracts from Pu-erh tea and Dian Hong black tea by CP-Py-GC/MS was written by Gong, Jia-shun;Tang, Chao;Peng, Chun-xiu. And the article was included in Journal of Analytical and Applied Pyrolysis in 2012.Recommanded Product: 20324-33-8 This article mentions the following:

Solvent extracts from a type of Pu-erh tea and Dian Hong black tea were characterized by Curie-point pyrolysis-gas chromatog.-mass spectroscopy (CP-Py-GC/MS). The ethyl-acetate extracts from both teas showed similar CP-Py-GC/MS results, with main pyrolytic products of carbon dioxide, caffeine, o-phenols, and phthalate esters. During pyrolysis, the n-butanol extract from Pu-erh tea formed carbon dioxide (38.92% of total pyrolytic products), alkaloids (49.7%), and nitrogen oxides (8.38%), as well as a small fraction of esters. The n-butanol extract from Dian Hong tea formed mainly alcs., amines, esters, phenols, carboxylic acids, and alkaloids. The raw theabrownin extracts (ethanol precipitates) from the two teas produced substantially different CP-Py-GC/MS results. The raw theabrownin extract from Pu-erh tea formed mostly carbon dioxide during pyrolysis, whereas the counterpart extract from Dian Hong tea formed mainly carbon dioxide (48.23%) and nitrogen oxides (35.39%). The 3.5-100 kDa fractions separated from the theabrownin extracts of the two teas showed similar CP-Py-GC/MS results, whereas the fractions <3.5 kDa and >100 kDa formed substantially different pyrolytic products. These results showed that solvent extracts from Pu-erh tea and Dian Hong tea had substantially different chem. compositions and structures. The study suggested that CP-Py-GC/MS can be used to effectively identify chem. differences between tea extracts In the experiment, the researchers used many compounds, for example, 1-((1-((1-Methoxypropan-2-yl)oxy)propan-2-yl)oxy)propan-2-ol (cas: 20324-33-8Recommanded Product: 20324-33-8).

1-((1-((1-Methoxypropan-2-yl)oxy)propan-2-yl)oxy)propan-2-ol (cas: 20324-33-8) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. But on the other hand, ethers undergo cleavage by reaction with acids. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides.Recommanded Product: 20324-33-8

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Sardar, Bitan et al. published their research in Journal of Organic Chemistry in 2022 | CAS: 105-13-5

(4-Methoxyphenyl)methanol (cas: 105-13-5) belongs to ethers. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides. Autoxidation is the spontaneous oxidation of a compound in air. In the presence of oxygen, ethers slowly autoxidize to form hydroperoxides and dialkyl peroxides. If concentrated or heated, these peroxides may explode. To prevent such explosions, ethers should be obtained in small quantities, kept in tightly sealed containers, and used promptly.SDS of cas: 105-13-5

Ru Doped Hydrotalcite Catalyzed Borrowing Hydrogen-Mediated N-Alkylation of Benzamides, Sulfonamides, and Dehydrogenative Synthesis of Quinazolinones was written by Sardar, Bitan;Jamatia, Ramen;Samanta, Arup;Srimani, Dipankar. And the article was included in Journal of Organic Chemistry in 2022.SDS of cas: 105-13-5 This article mentions the following:

An efficient Ru doped hydrotalcite catalyzed N-alkylation of benzamides and sulfonamides with alcs. via borrowing hydrogen catalysis is illustrated. Various primary alcs., including benzyl, heteroaryl, and aliphatic alcs., were alkylated in good to excellent yields. To shed light on the mechanistic details, several control studies and deuterium labeling experiments were performed. Mechanistic studies underpin that the reaction is going via a borrowing hydrogen pathway rather than an SN1 type mechanism. The reaction can be easily scaled up without any detrimental effect on the yield. The catalyst is also capable of synthesizing quinazolinone directly from 2-aminobenzamide and alcs. Successful recyclability and high reactivity highlight the practical applicability of the catalyst. In the experiment, the researchers used many compounds, for example, (4-Methoxyphenyl)methanol (cas: 105-13-5SDS of cas: 105-13-5).

(4-Methoxyphenyl)methanol (cas: 105-13-5) belongs to ethers. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides. Autoxidation is the spontaneous oxidation of a compound in air. In the presence of oxygen, ethers slowly autoxidize to form hydroperoxides and dialkyl peroxides. If concentrated or heated, these peroxides may explode. To prevent such explosions, ethers should be obtained in small quantities, kept in tightly sealed containers, and used promptly.SDS of cas: 105-13-5

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Lee, Aejin et al. published their research in Science of the Total Environment in 2022 | CAS: 111-77-3

2-(2-Methoxyethoxy)ethanol (cas: 111-77-3) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. Ethers can form hydrogen bonds with other molecules (alcohols, amines, etc.) that have O―H or N―H bonds. The ability to form hydrogen bonds with other compounds makes ethers particularly good solvents for a wide variety of organic compounds and a surprisingly large number of inorganic compounds.Category: ethers-buliding-blocks

Exploitation of distillation for energy-efficient and cost-effective environmentally benign process of waste solvents recovery from semiconductor industry was written by Lee, Aejin;Naquash, Ahmad;Lee, Moonyong;Chaniago, Yus Donald;Lim, Hankwon. And the article was included in Science of the Total Environment in 2022.Category: ethers-buliding-blocks This article mentions the following:

The waste solvent is unavoidably generated from the high solvent dependable processes. One of them is the semiconductor industry. The waste solvent is frequently incinerated to eliminate hazardous waste and this practice raises the issue of environmental and treatment costs. Thus, recovery of waste solvent is a substantial environmental mitigation option. This study explores the recovery of multicomponent waste solvents from the semiconductor industry. To achieve a greener and energy-efficient process, the recovery process is proposed through investigation of mixture thermodn. behavior, process design, optimization, economics, and integration of renewable energy for environmental advantages. Herein, Distillation, a practical technol. option for solvent recovery, with green solvent for extractive distillation and a new approach using renewable energy in waste solvent recovery are explored. As the result, waste solvent recovery by distillation with conventional energy exhibits bold advantages to cost and lower carbon process compared to waste disposal. The integration of renewable energy with about 37% share of conventional energy as the backup indicates the highest annual cost-saving and reduces about 89.4% of annual carbon emission compared to carbon emission from waste disposal. In the experiment, the researchers used many compounds, for example, 2-(2-Methoxyethoxy)ethanol (cas: 111-77-3Category: ethers-buliding-blocks).

2-(2-Methoxyethoxy)ethanol (cas: 111-77-3) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. Ethers can form hydrogen bonds with other molecules (alcohols, amines, etc.) that have O―H or N―H bonds. The ability to form hydrogen bonds with other compounds makes ethers particularly good solvents for a wide variety of organic compounds and a surprisingly large number of inorganic compounds.Category: ethers-buliding-blocks

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem