Kinsinger, Thorsten et al. published their research in Organic Letters in 2022 | CAS: 105-13-5

(4-Methoxyphenyl)methanol (cas: 105-13-5) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil. Electron-deficient reagents are also stabilized by ethers. For example, borane (BH3) is a useful reagent for making alcohols. Pure borane exists as its dimer, diborane (B2H6), a toxic gas that is inconvenient and hazardous to use. Borane forms stable complexes with ethers, however, and it is often supplied and used as its liquid complex with tetrahydrofuran (THF).Category: ethers-buliding-blocks

Application of Vinyl Nucleophiles in Matteson Homologations was written by Kinsinger, Thorsten;Kazmaier, Uli. And the article was included in Organic Letters in 2022.Category: ethers-buliding-blocks This article mentions the following:

The Matteson homologation with vinyl nucleophiles was found to be a versatile tool for the synthesis of highly substituted and functionalized allyl boronic esters I (R = phenylethyl, Me, butan-2-yl, etc.), II (R1 = H, Me; R2 = H, Me; R3 = H, Me), III and IV (R4 = Me, Et, n-Pr; R5 = H, Me). High yields and stereoselectivities are obtained with sterically demanding alkyl boronic esters and/or Grignard reagents. With the application of such vinyl Matteson homologations, the polyketide fragment of lagunamide B is synthesized. In the experiment, the researchers used many compounds, for example, (4-Methoxyphenyl)methanol (cas: 105-13-5Category: ethers-buliding-blocks).

(4-Methoxyphenyl)methanol (cas: 105-13-5) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil. Electron-deficient reagents are also stabilized by ethers. For example, borane (BH3) is a useful reagent for making alcohols. Pure borane exists as its dimer, diborane (B2H6), a toxic gas that is inconvenient and hazardous to use. Borane forms stable complexes with ethers, however, and it is often supplied and used as its liquid complex with tetrahydrofuran (THF).Category: ethers-buliding-blocks

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Nishikata, Takashi et al. published their research in Organic Letters in 2010 | CAS: 56619-93-3

N-(3-Methoxyphenyl)pivalamide (cas: 56619-93-3) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. But on the other hand, ethers undergo cleavage by reaction with acids. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides.SDS of cas: 56619-93-3

Cationic Pd(II)-Catalyzed Fujiwara-Moritani Reactions at Room Temperature in Water was written by Nishikata, Takashi;Lipshutz, Bruce H.. And the article was included in Organic Letters in 2010.SDS of cas: 56619-93-3 This article mentions the following:

PdII-catalyzed Fujiwara-Moritani reactions can be carried out without external acid at room temperature and in water as the only medium. A highly active cationic PdII catalyst, [Pd(MeCN)4](BF4)2, easily activates aromatic C-H bonds to produce electron-rich cinnamates in good yields. In the experiment, the researchers used many compounds, for example, N-(3-Methoxyphenyl)pivalamide (cas: 56619-93-3SDS of cas: 56619-93-3).

N-(3-Methoxyphenyl)pivalamide (cas: 56619-93-3) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. But on the other hand, ethers undergo cleavage by reaction with acids. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides.SDS of cas: 56619-93-3

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Chinnagolla, Ravi Kiran et al. published their research in Chemical Communications (Cambridge, United Kingdom) in 2013 | CAS: 16356-02-8

1,4-Dimethoxy-2-butyne (cas: 16356-02-8) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. Ethyl ether is an excellent solvent for extractions and for a wide variety of chemical reactions. It is also used as a volatile starting fluid for diesel engines and gasoline engines in cold weather. Dimethyl ether is used as a spray propellant and refrigerant. Methyl t-butyl ether (MTBE) is a gasoline additive that boosts the octane number and reduces the amount of nitrogen-oxide pollutants in the exhaust. The ethers of ethylene glycol are used as solvents and plasticizers.HPLC of Formula: 16356-02-8

A regioselective synthesis of 1-haloisoquinolines via ruthenium-catalyzed cyclization of O-methylbenzohydroximoyl halides with alkynes was written by Chinnagolla, Ravi Kiran;Pimparkar, Sandeep;Jeganmohan, Masilamani. And the article was included in Chemical Communications (Cambridge, United Kingdom) in 2013.HPLC of Formula: 16356-02-8 This article mentions the following:

A ruthenium-catalyzed highly regioselective cyclization of substituted N-methoxy benzimidoyl halides with alkynes in the presence of CsOAc (25 mol%) to give substituted 1-halo and 1-alkoxy substituted isoquinolines in good to excellent yields is described. E.g., in presence of [(RuCl2(p-cymene))2] and CsOAc, reaction of 4-MeC6H4CCl:NOMe and PhCCMe gave 77% isoquinoline derivative (I). In the experiment, the researchers used many compounds, for example, 1,4-Dimethoxy-2-butyne (cas: 16356-02-8HPLC of Formula: 16356-02-8).

1,4-Dimethoxy-2-butyne (cas: 16356-02-8) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. Ethyl ether is an excellent solvent for extractions and for a wide variety of chemical reactions. It is also used as a volatile starting fluid for diesel engines and gasoline engines in cold weather. Dimethyl ether is used as a spray propellant and refrigerant. Methyl t-butyl ether (MTBE) is a gasoline additive that boosts the octane number and reduces the amount of nitrogen-oxide pollutants in the exhaust. The ethers of ethylene glycol are used as solvents and plasticizers.HPLC of Formula: 16356-02-8

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Gomes, Reginaldo J. et al. published their research in Journal of Physical Chemistry C in 2022 | CAS: 112-49-2

2,5,8,11-Tetraoxadodecane (cas: 112-49-2) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. Electron-deficient reagents are also stabilized by ethers. For example, borane (BH3) is a useful reagent for making alcohols. Pure borane exists as its dimer, diborane (B2H6), a toxic gas that is inconvenient and hazardous to use. Borane forms stable complexes with ethers, however, and it is often supplied and used as its liquid complex with tetrahydrofuran (THF).Application of 112-49-2

Probing Electrolyte Influence on CO2 Reduction in Aprotic Solvents was written by Gomes, Reginaldo J.;Birch, Chris;Cencer, Morgan M.;Li, Chenyang;Son, Seoung-Bum;Bloom, Ira D.;Assary, Rajeev S.;Amanchukwu, Chibueze V.. And the article was included in Journal of Physical Chemistry C in 2022.Application of 112-49-2 This article mentions the following:

Selective CO2 capture and electrochem. conversion are important tools in the fight against climate change. Industrially, CO2 is captured using a variety of aprotic solvents due to their high CO2 solubility However, most research efforts on electrochem. CO2 conversion use aqueous media and are plagued by competing hydrogen evolution reaction (HER) from water breakdown. Fortunately, aprotic solvents can circumvent HER, making it important to develop strategies that enable integrated CO2 capture and conversion. However, the influence of ion solvation and solvent selection within nonaqueous electrolytes for efficient and selective CO2 reduction is unclear. In this work, we show that the bulk solvation behavior within the nonaqueous electrolyte can control the CO2 reduction reaction and product distribution occurring at the catalyst-electrolyte interface. We study different tetrabutylammonium (TBA) salts in two electrolyte systems with glyme ethers (e.g., 1,2 dimethoxyethane or DME) and DMSO (DMSO) as a low and high dielec. constant medium, resp. Using spectroscopic tools, we quantify the fraction of ion pairs that forms within the electrolyte. Also, we show how ion pair formation is prevalent in DME and is dependent on the anion type. More importantly, we show that as ion pair formation decreases within the electrolyte, CO2 current densities increase, and a higher CO Faradaic efficiency is observed at low overpotentials. Meanwhile, in an electrolyte medium where the ion pair fraction does not change with the anion type (such as in DMSO), a smaller influence of solvation is observed on CO2 current densities and product distribution. By directly coupling bulk solvation to interfacial reactions and product distribution, we showcase the importance and utility of controlling the reaction microenvironment in tuning the electrocatalytic reaction pathways. Insights gained from this work will enable novel electrolyte designs for efficient and selective CO2 conversion to desired fuels and chems. In the experiment, the researchers used many compounds, for example, 2,5,8,11-Tetraoxadodecane (cas: 112-49-2Application of 112-49-2).

2,5,8,11-Tetraoxadodecane (cas: 112-49-2) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. Electron-deficient reagents are also stabilized by ethers. For example, borane (BH3) is a useful reagent for making alcohols. Pure borane exists as its dimer, diborane (B2H6), a toxic gas that is inconvenient and hazardous to use. Borane forms stable complexes with ethers, however, and it is often supplied and used as its liquid complex with tetrahydrofuran (THF).Application of 112-49-2

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Shintani, Ryo et al. published their research in Chemical Communications (Cambridge, United Kingdom) in 2015 | CAS: 16356-02-8

1,4-Dimethoxy-2-butyne (cas: 16356-02-8) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil. Autoxidation is the spontaneous oxidation of a compound in air. In the presence of oxygen, ethers slowly autoxidize to form hydroperoxides and dialkyl peroxides. If concentrated or heated, these peroxides may explode. To prevent such explosions, ethers should be obtained in small quantities, kept in tightly sealed containers, and used promptly.Application of 16356-02-8

Rhodium-catalyzed intramolecular alkynylsilylation of alkynes was written by Shintani, Ryo;Kurata, Hiroki;Nozaki, Kyoko. And the article was included in Chemical Communications (Cambridge, United Kingdom) in 2015.Application of 16356-02-8 This article mentions the following:

Rhodium-catalyzed intramol. alkynylsilylation of alkynes is described. The reaction proceeds through syn-insertion by a cationic rhodium/triarylphosphine catalyst, representing the first alkynylsilylation of alkynes via the cleavage of a C(sp)-Si bond by transition-metal catalysis. A highly enantioselective variant is also described for the creation of a silicon stereogenic center. In the experiment, the researchers used many compounds, for example, 1,4-Dimethoxy-2-butyne (cas: 16356-02-8Application of 16356-02-8).

1,4-Dimethoxy-2-butyne (cas: 16356-02-8) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil. Autoxidation is the spontaneous oxidation of a compound in air. In the presence of oxygen, ethers slowly autoxidize to form hydroperoxides and dialkyl peroxides. If concentrated or heated, these peroxides may explode. To prevent such explosions, ethers should be obtained in small quantities, kept in tightly sealed containers, and used promptly.Application of 16356-02-8

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Weitkamp, Petra et al. published their research in Journal of Agricultural and Food Chemistry in 2006 | CAS: 3929-47-3

3-(3,4-Dimethoxyphenyl)propan-1-ol (cas: 3929-47-3) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. Electron-deficient reagents are also stabilized by ethers. For example, borane (BH3) is a useful reagent for making alcohols. Pure borane exists as its dimer, diborane (B2H6), a toxic gas that is inconvenient and hazardous to use. Borane forms stable complexes with ethers, however, and it is often supplied and used as its liquid complex with tetrahydrofuran (THF).Name: 3-(3,4-Dimethoxyphenyl)propan-1-ol

Highly Efficient Preparation of Lipophilic Hydroxycinnamates by Solvent-free Lipase-Catalyzed Transesterification was written by Weitkamp, Petra;Vosmann, Klaus;Weber, Nikolaus. And the article was included in Journal of Agricultural and Food Chemistry in 2006.Name: 3-(3,4-Dimethoxyphenyl)propan-1-ol This article mentions the following:

Various medium- or long-chain alkyl cinnamates and hydroxycinnamates, including oleyl p-coumarate as well as palmityl and oleyl ferulates, were prepared in high yield by lipase-catalyzed transesterification of an equimolar mixture of a short-chain alkyl cinnamate and a fatty alc. such as lauryl, palmityl, and oleyl alc. under partial vacuum at moderate temperature in the absence of solvents and drying agents in direct contact with the reaction mixture Immobilized lipase B from Candida antarctica was the most effective biocatalyst for the various transesterification reactions. Transesterification activity of this enzyme was up to 56-fold higher than esterification activity for the preparation of medium- and long-chain alkyl ferulates. The relative transesterification activities found for C. antarctica lipase were of the following order: hydrocinnamate > cinnamate > 4-hydroxyhydrocinnamate > 3-methoxycinnamate > 2-methoxycinnamate �4-methoxycinnamate �3-hydroxycinnamate > hydrocaffeate �4-hydroxycinnamate > ferulate > 2-hydroxycinnamate > caffeate �sinapate. With respect to the position of the hydroxy substituents at the Ph moiety, the transesterification activity of C. antarctica lipase B increased in the order meta > para > ortho. The immobilized lipases from Rhizomucor miehei and Thermomyces lanuginosus demonstrated moderate and low transesterification activity, resp. Compounds with inverse chem. structure, i.e., 3-phenylpropyl alkanoates such as 3-(4-hydroxyphenyl)propyl oleate and 3-(3,4-dimethoxyphenyl)propyl oleate, were obtained by C. antarctica lipase-catalyzed transesterification of fatty acid Me esters with the corresponding 3-phenylpropan-1-ols in high yield, as well. In the experiment, the researchers used many compounds, for example, 3-(3,4-Dimethoxyphenyl)propan-1-ol (cas: 3929-47-3Name: 3-(3,4-Dimethoxyphenyl)propan-1-ol).

3-(3,4-Dimethoxyphenyl)propan-1-ol (cas: 3929-47-3) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. Electron-deficient reagents are also stabilized by ethers. For example, borane (BH3) is a useful reagent for making alcohols. Pure borane exists as its dimer, diborane (B2H6), a toxic gas that is inconvenient and hazardous to use. Borane forms stable complexes with ethers, however, and it is often supplied and used as its liquid complex with tetrahydrofuran (THF).Name: 3-(3,4-Dimethoxyphenyl)propan-1-ol

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Heller, Stephen T. et al. published their research in Organic Letters in 2010 | CAS: 1877-75-4

2-(4-Methoxyphenoxy)acetic acid (cas: 1877-75-4) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. But on the other hand, ethers undergo cleavage by reaction with acids. At room temperature, ethers are pleasant-smelling colourless liquids. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil.Category: ethers-buliding-blocks

Chemoselective esterification and amidation of carboxylic acids with imidazole carbamates and ureas was written by Heller, Stephen T.;Sarpong, Richmond. And the article was included in Organic Letters in 2010.Category: ethers-buliding-blocks This article mentions the following:

Imidazole carbamates and ureas were found to be chemoselective esterification and amidation reagents. A wide variety of carboxylic acids were converted to their ester or amide analogs by a simple synthetic procedure in high yields. In the experiment, the researchers used many compounds, for example, 2-(4-Methoxyphenoxy)acetic acid (cas: 1877-75-4Category: ethers-buliding-blocks).

2-(4-Methoxyphenoxy)acetic acid (cas: 1877-75-4) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. But on the other hand, ethers undergo cleavage by reaction with acids. At room temperature, ethers are pleasant-smelling colourless liquids. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil.Category: ethers-buliding-blocks

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Chen, Xueyuan et al. published their research in Langmuir in 2021 | CAS: 111-77-3

2-(2-Methoxyethoxy)ethanol (cas: 111-77-3) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive. At room temperature, ethers are pleasant-smelling colourless liquids. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil.Product Details of 111-77-3

Structure and Oxidation Effects on Conformation and Thermoresponsiveness of the OEGylated Poly(glutamic acid)-Bearing Side-Chain Thioether Linkers was written by Chen, Xueyuan;Zhong, Junyang;Jiang, Xinlin;He, Ziqing;Quan, Yusi;Zhong, Songjing;Li, Guangji;Huang, Yugang. And the article was included in Langmuir in 2021.Product Details of 111-77-3 This article mentions the following:

A series of side-chain thioether-linked OEGylated poly(glutamic acid) (PGAs) have been synthesized by “thiol-ene” synthetic methodol., where both the oligo-ethylene glycol (OEG) length and the hydrophobic linkers at the side chains are varied to learn how these structural features affect the secondary structure and thermoresponsive behaviors in water. Before side-chain oxidation, the structural factors affecting the α-helicity include the backbone length, the OEG length, and the hydrophobic linkers’ length at the side chains; however, the OEG length plays the most crucial role among these factors because longer OEG around the peripheral side chains can stop water penetration into the backbone to disturb the intramol. H bonds, which finally allows stabilizing the α-helix; after the oxidation, the polypeptides show increased α-helicity because of the enhanced hydrophilicity. More interestingly, a rare oxidation-induced conformation transition from the ordered β-sheet to the ordered α-helix can be achieved. In addition, only the OEGylated poly(glutamic acids) (PGAs) with shorter hydrophobic linkers and longer OEG can display the thermoresponsive properties before the oxidation but the subsequent oxidation can cause the polypeptides bearing longer hydrophobic linkers to exhibit the thermosensitivity since sulfone formation at the side chain can lead to final hydrophilicity-hydrophobicity balance. This work is meaningful to understand the secondary structure-associated solution behaviors of the synthetic polypeptides. In the experiment, the researchers used many compounds, for example, 2-(2-Methoxyethoxy)ethanol (cas: 111-77-3Product Details of 111-77-3).

2-(2-Methoxyethoxy)ethanol (cas: 111-77-3) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive. At room temperature, ethers are pleasant-smelling colourless liquids. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil.Product Details of 111-77-3

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Kawashima, Takuya et al. published their research in Journal of the American Chemical Society in 2017 | CAS: 16356-02-8

1,4-Dimethoxy-2-butyne (cas: 16356-02-8) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil. The unique properties of ethers (i.e., that they are strongly polar, with nonbonding electron pairs but no hydroxyl group) enhance the formation and use of many reagents. For example, Grignard reagents cannot form unless an ether is present to share its lone pair of electrons with the magnesium atom. Complexation of the magnesium atom stabilizes the Grignard reagent and helps to keep it in solution.COA of Formula: C6H10O2

Nickel-Catalyzed Formation of 1,3-Dienes via a Highly Selective Cross-Tetramerization of Tetrafluoroethylene, Styrenes, Alkynes, and Ethylene was written by Kawashima, Takuya;Ohashi, Masato;Ogoshi, Sensuke. And the article was included in Journal of the American Chemical Society in 2017.COA of Formula: C6H10O2 This article mentions the following:

In the presence of a catalytic amount of Ni(cod)2 (cod = 1,5-cyclooctadiene) and PCy3 (Cy = cyclohexyl), the cross-tetramerization of tetrafluoroethylene (TFE), alkynes, and ethylene occurred in a highly selective manner to afford a variety of 1,3-dienes with a 3,3,4,4-tetrafluorobutyl chain. In addition, a Ni(0)-catalyzed cross-tetramerization of TFE, alkynes, ethylene, and styrenes was developed. These catalytic reactions might proceed via partially fluorinated five- and seven-membered nickelacycle key intermediates. In the experiment, the researchers used many compounds, for example, 1,4-Dimethoxy-2-butyne (cas: 16356-02-8COA of Formula: C6H10O2).

1,4-Dimethoxy-2-butyne (cas: 16356-02-8) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil. The unique properties of ethers (i.e., that they are strongly polar, with nonbonding electron pairs but no hydroxyl group) enhance the formation and use of many reagents. For example, Grignard reagents cannot form unless an ether is present to share its lone pair of electrons with the magnesium atom. Complexation of the magnesium atom stabilizes the Grignard reagent and helps to keep it in solution.COA of Formula: C6H10O2

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Rakhmanov, E. V. et al. published their research in Petroleum Chemistry in 2011 | CAS: 66943-05-3

1,4,7,10-Tetraoxa-13-azacyclopentadecane (cas: 66943-05-3) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. But on the other hand, ethers undergo cleavage by reaction with acids. The unique properties of ethers (i.e., that they are strongly polar, with nonbonding electron pairs but no hydroxyl group) enhance the formation and use of many reagents. For example, Grignard reagents cannot form unless an ether is present to share its lone pair of electrons with the magnesium atom. Complexation of the magnesium atom stabilizes the Grignard reagent and helps to keep it in solution.Name: 1,4,7,10-Tetraoxa-13-azacyclopentadecane

Hydrogen peroxide oxidative desulfurization of model diesel fuel mixtures in the presence of crown ethers and transition metal peroxo complexes was written by Rakhmanov, E. V.;Jinyuan, Dan;Fedorova, O. A.;Tarakanova, A. V.;Anisimov, A. V.. And the article was included in Petroleum Chemistry in 2011.Name: 1,4,7,10-Tetraoxa-13-azacyclopentadecane This article mentions the following:

The catalytic ability of crown ethers and their complexes with transition metal cations in the desulfurization reaction of mixtures that simulate diesel fuel has been investigated. It has been found that the use of monoaza-15-crown-5-ethers with an admixture of NbCl5 resulted in a fourfold decrease of the total sulfur content, thereby indicating partial oxidation of benzothiophenes and dibenzothiophenes. The complexation of azacrown ethers with NbCl5 has been studied by 1H NMR spectroscopy. A moderate efficiency of adsorption purification procedure using silica and alumina for both initial and oxidized model mixtures has been revealed. In the experiment, the researchers used many compounds, for example, 1,4,7,10-Tetraoxa-13-azacyclopentadecane (cas: 66943-05-3Name: 1,4,7,10-Tetraoxa-13-azacyclopentadecane).

1,4,7,10-Tetraoxa-13-azacyclopentadecane (cas: 66943-05-3) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. But on the other hand, ethers undergo cleavage by reaction with acids. The unique properties of ethers (i.e., that they are strongly polar, with nonbonding electron pairs but no hydroxyl group) enhance the formation and use of many reagents. For example, Grignard reagents cannot form unless an ether is present to share its lone pair of electrons with the magnesium atom. Complexation of the magnesium atom stabilizes the Grignard reagent and helps to keep it in solution.Name: 1,4,7,10-Tetraoxa-13-azacyclopentadecane

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem