Ohta, Akira et al. published their research in Mokuzai Gakkaishi in 1990 | CAS: 3929-47-3

3-(3,4-Dimethoxyphenyl)propan-1-ol (cas: 3929-47-3) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. Ethers feature bent C閳ユ彊閳ユ弲 linkages. In dimethyl ether, the bond angle is 111鎺?and C閳ユ彊 distances are 141 pm. The barrier to rotation about the C閳ユ彊 bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.Safety of 3-(3,4-Dimethoxyphenyl)propan-1-ol

Production of secondary metabolites including a new metabolite p-methoxyphenylpropanol by the brown-rot fungus Lentinus lepideus was written by Ohta, Akira;Shimada, Mikio;Hattori, Takefumi;Higuchi, Takayoshi;Takahashi, Munezoh. And the article was included in Mokuzai Gakkaishi in 1990.Safety of 3-(3,4-Dimethoxyphenyl)propan-1-ol This article mentions the following:

The secondary metabolites which were biosynthesized from glucose by the brown-rot fungus L. lepideus grown in cultures with varying amounts of nitrogen nutrients were determined The low nitrogen concentration culture produced much greater amounts of the metabolites per nitrogen gram unit than did the high nitrogen concentration culture. A new secondary metabolite, p-methoxyphenylpropanol, was isolated from the cultures of this fungus. Incubation of the cultures with p-coumaric acid, p-methoxycinnamic acid, ferulic acid, isoferulic acid, and Me ferulate yielded a variety of phenylpropanol derivatives A possible biosynthetic route for p-methoxyphenylpropanol is discussed. Among 75 species of white-rot and brown-rot fungi examined, only the brown-rot fungus Daedalea鑱?em>dickinsii produced Me p-methoxycinnamate. In the experiment, the researchers used many compounds, for example, 3-(3,4-Dimethoxyphenyl)propan-1-ol (cas: 3929-47-3Safety of 3-(3,4-Dimethoxyphenyl)propan-1-ol).

3-(3,4-Dimethoxyphenyl)propan-1-ol (cas: 3929-47-3) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. Ethers feature bent C閳ユ彊閳ユ弲 linkages. In dimethyl ether, the bond angle is 111鎺?and C閳ユ彊 distances are 141 pm. The barrier to rotation about the C閳ユ彊 bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.Safety of 3-(3,4-Dimethoxyphenyl)propan-1-ol

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Motsch, Bill J. et al. published their research in Organic Letters in 2022 | CAS: 105-13-5

(4-Methoxyphenyl)methanol (cas: 105-13-5) belongs to ethers. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides. Ethers feature bent C閳ユ彊閳ユ弲 linkages. In dimethyl ether, the bond angle is 111鎺?and C閳ユ彊 distances are 141 pm. The barrier to rotation about the C閳ユ彊 bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.Related Products of 105-13-5

Site-Selective Synthesis of N-Benzyl 2,4,6-Collidinium Salts by Electrooxidative C-H Functionalization was written by Motsch, Bill J.;Wengryniuk, Sarah E.. And the article was included in Organic Letters in 2022.Related Products of 105-13-5 This article mentions the following:

The synthesis of benzylic 2,4,6-collidinium salts I (R = Br, 3-chloropropyl, (piperidin-1-yl)carbonyl, etc.; R1 = Me, Bn, TBS, etc.; R2 = R3 = H, Me; R4 = Me, Et, propan-2-yl, etc.; R4, R3 = -CH2-CH2-CH2-; R5 = 2,4,6-trimethyl-pyridin-1-ylium-1-yl-tetrafluoroborate salt, pyridin-1-ylium-1-yl-tetrafluoroborate salt, 2-phenyl-pyridin-1-ylium-1-yl-tetrafluoroborate salt, etc.; X = C, N) via electrooxidative C-H functionalization has been reported . This method provides a complementary approach to traditional strategies relying on substitution and condensation of prefunctionalized substrates. In the experiment, the researchers used many compounds, for example, (4-Methoxyphenyl)methanol (cas: 105-13-5Related Products of 105-13-5).

(4-Methoxyphenyl)methanol (cas: 105-13-5) belongs to ethers. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides. Ethers feature bent C閳ユ彊閳ユ弲 linkages. In dimethyl ether, the bond angle is 111鎺?and C閳ユ彊 distances are 141 pm. The barrier to rotation about the C閳ユ彊 bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.Related Products of 105-13-5

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Sun, Kangkang et al. published their research in Nature Communications in 2022 | CAS: 105-13-5

(4-Methoxyphenyl)methanol (cas: 105-13-5) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides.Reference of 105-13-5

Efficient iron single-atom catalysts for selective ammoxidation of alcohols to nitriles was written by Sun, Kangkang;Shan, Hongbin;Neumann, Helfried;Lu, Guo-Ping;Beller, Matthias. And the article was included in Nature Communications in 2022.Reference of 105-13-5 This article mentions the following:

Zeolitic imidazolate frameworks derived Fe1-N-C catalysts with isolated single iron atoms were synthesized and applied for selective ammoxidation reactions. For the preparation of the different Fe-based materials, benzylamine as an additive proved to be essential to tune the morphol. and size of ZIFs resulting in uniform and smaller particles, which allowed stable atomically dispersed Fe-N4 active sites. The optimal catalyst Fe1-N-C achieved an efficient synthesis of various aryl, heterocyclic, allylic, and aliphatic nitriles from alcs. in water under very mild conditions. With its chemoselectivity, recyclability, high efficiency under mild conditions this new system complemented the toolbox of catalysts for nitrile synthesis, which were important intermediates with many applications in life sciences and industry. In the experiment, the researchers used many compounds, for example, (4-Methoxyphenyl)methanol (cas: 105-13-5Reference of 105-13-5).

(4-Methoxyphenyl)methanol (cas: 105-13-5) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides.Reference of 105-13-5

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Uno, Shinpei et al. published their research in Journal of Biological Chemistry in 2019 | CAS: 605-94-7

2,3-Dimethoxy-5-methylcyclohexa-2,5-diene-1,4-dione (cas: 605-94-7) belongs to ethers. The oxygen atom in ethers are more electronegative than carbon, thus the hydrogens which are alpha to the ethers are more acidic than the simple hydrocarbons. The unique properties of ethers (i.e., that they are strongly polar, with nonbonding electron pairs but no hydroxyl group) enhance the formation and use of many reagents. For example, Grignard reagents cannot form unless an ether is present to share its lone pair of electrons with the magnesium atom. Complexation of the magnesium atom stabilizes the Grignard reagent and helps to keep it in solution.COA of Formula: C9H10O4

Exploring the quinone/inhibitor-binding pocket in mitochondrial respiratory complex I by chemical biology approaches was written by Uno, Shinpei;Kimura, Hironori;Murai, Masatoshi;Miyoshi, Hideto. And the article was included in Journal of Biological Chemistry in 2019.COA of Formula: C9H10O4 This article mentions the following:

NADH-quinone oxidoreductase (respiratory complex I) couples NADH-to-quinone electron transfer to the translocation of protons across the membrane. Even though the architecture of the quinone-access channel in the enzyme has been modeled by X-ray crystallog. and cryo-EM, conflicting findings raise the question whether the models fully reflect physiol. relevant states present throughout the catalytic cycle. To gain further insights into the structural features of the binding pocket for quinone/inhibitor, we performed chem. biol. experiments using bovine heart sub-mitochondrial particles. We synthesized ubiquinones (UQs) that are oversized ,(i.e., SF-UQs) or lipid-like (i.e., PC-UQs) and are highly unlikely to enter and transit the predicted narrow channel. We found that SF-UQs and PC-UQs can be catalytically reduced by complex I, albeit only at moderate or low rates. Moreover, quinone-site inhibitors completely blocked the catalytic reduction and the membrane potential formation coupled to this reduction Photoaffinity-labeling experiments revealed that amiloride-type inhibitors bind to the interfacial domain of multiple core subunits (49 kDa, ND1, and PSST) and the 39-kDa supernumerary subunit, although the latter does not make up the channel cavity in the current models. The binding of amilorides to the multiple target subunits was remarkably suppressed by other quinone-site inhibitors and SF-UQs. Taken together, the present results are difficult to reconcile with the current channel models. On the basis of comprehensive interpretations of the present results and of previous findings, we discuss the physiol. relevance of these models. In the experiment, the researchers used many compounds, for example, 2,3-Dimethoxy-5-methylcyclohexa-2,5-diene-1,4-dione (cas: 605-94-7COA of Formula: C9H10O4).

2,3-Dimethoxy-5-methylcyclohexa-2,5-diene-1,4-dione (cas: 605-94-7) belongs to ethers. The oxygen atom in ethers are more electronegative than carbon, thus the hydrogens which are alpha to the ethers are more acidic than the simple hydrocarbons. The unique properties of ethers (i.e., that they are strongly polar, with nonbonding electron pairs but no hydroxyl group) enhance the formation and use of many reagents. For example, Grignard reagents cannot form unless an ether is present to share its lone pair of electrons with the magnesium atom. Complexation of the magnesium atom stabilizes the Grignard reagent and helps to keep it in solution.COA of Formula: C9H10O4

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Houtman, Corine J. et al. published their research in Science of the Total Environment in 2019 | CAS: 112-49-2

2,5,8,11-Tetraoxadodecane (cas: 112-49-2) belongs to ethers. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides. Ethers feature bent C閳ユ彊閳ユ弲 linkages. In dimethyl ether, the bond angle is 111鎺?and C閳ユ彊 distances are 141 pm. The barrier to rotation about the C閳ユ彊 bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.Application of 112-49-2

Statistical analysis of GC-MS screening data to evaluate organic contaminants in surface and drinking water was written by Houtman, Corine J.;Kroesbergen, Jan;Baggelaar, Paul K.;van Lieverloo, J. Hein M.. And the article was included in Science of the Total Environment in 2019.Application of 112-49-2 This article mentions the following:

Due to anthropogenic activities in the catchments, surface waters are contaminated with a large variety of chem. compounds Drinking water companies in the Netherlands use surface water from the rivers Rhine, and Meuse, Lake IJssel and water from a reclaimed land area as sources for the production of drinking water. Samples from the abstraction points and the produced drinking waters were investigated using chem. screening with gas chromatog. coupled to mass spectrometry to detect an as wide as possible range of organic contaminants, generating enormous data sets. This study aimed to evaluate and interpret five and a half years of screening data to get insight in the variety of known and new less polar compounds in surface and drinking waters, and to investigate if there were spatial patterns in the detection of compounds Compounds from a wide variety of applications were detected. The vast majority of detected compounds was found only in a few samples. Certain compounds, however, e.g. organophosphate flame retardants, were detected with prevalences up to 100% per location. Most compounds were detected in samples from the rivers Rhine and Meuse, less in those from Lake IJssel and the reclaimed land area and only few in drinking water. Principal component and Hierarchical Cluster Analyses helped to detect patterns in the presence of contaminants on particular locations and to prioritize compounds for further investigation of their emission sources, and -in case of unknown compounds – their identification. In the experiment, the researchers used many compounds, for example, 2,5,8,11-Tetraoxadodecane (cas: 112-49-2Application of 112-49-2).

2,5,8,11-Tetraoxadodecane (cas: 112-49-2) belongs to ethers. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides. Ethers feature bent C閳ユ彊閳ユ弲 linkages. In dimethyl ether, the bond angle is 111鎺?and C閳ユ彊 distances are 141 pm. The barrier to rotation about the C閳ユ彊 bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.Application of 112-49-2

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Khan, Khalid Mohammed et al. published their research in Letters in Organic Chemistry in 2011 | CAS: 57179-35-8

3-Hydroxy-5-methoxybenzaldehyde (cas: 57179-35-8) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. Ethers feature bent C閳ユ彊閳ユ弲 linkages. In dimethyl ether, the bond angle is 111鎺?and C閳ユ彊 distances are 141 pm. The barrier to rotation about the C閳ユ彊 bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.Electric Literature of C8H8O3

NH4Cl-mediated new protocol for the synthesis of 5-arylidene barbiturates was written by Khan, Khalid Mohammed;Ali, Muhammad;Khan, Momin;Taha, Muhammad;Perveen, Shahnaz. And the article was included in Letters in Organic Chemistry in 2011.Electric Literature of C8H8O3 This article mentions the following:

Eco-benign method for synthesizing arylidene barbiturates was developed by using NH4Cl in stoichiometric amount, as an enolization activator, in water. Execution of methodol. is simple, products obtained in high yields and the reactions are completed within 30 min. The new methodol. does not involve any solvent/solvent extraction while solid products were yielded in all cases which were filtered and washed. In the experiment, the researchers used many compounds, for example, 3-Hydroxy-5-methoxybenzaldehyde (cas: 57179-35-8Electric Literature of C8H8O3).

3-Hydroxy-5-methoxybenzaldehyde (cas: 57179-35-8) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. Ethers feature bent C閳ユ彊閳ユ弲 linkages. In dimethyl ether, the bond angle is 111鎺?and C閳ユ彊 distances are 141 pm. The barrier to rotation about the C閳ユ彊 bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.Electric Literature of C8H8O3

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Cravotto, Giancarlo et al. published their research in Journal of Organic Chemistry in 2001 | CAS: 5367-32-8

3-Methyl-4-nitroanisole (cas: 5367-32-8) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil. The unique properties of ethers (i.e., that they are strongly polar, with nonbonding electron pairs but no hydroxyl group) enhance the formation and use of many reagents. For example, Grignard reagents cannot form unless an ether is present to share its lone pair of electrons with the magnesium atom. Complexation of the magnesium atom stabilizes the Grignard reagent and helps to keep it in solution.Recommanded Product: 3-Methyl-4-nitroanisole

Azomethine Ylide Cycloaddition/Reductive Heterocyclization Approach to Oxindole Alkaloids: Asymmetric Synthesis of (-)-Horsfiline was written by Cravotto, Giancarlo;Giovenzana, Giovanni Battista;Pilati, Tullio;Sisti, Massimo;Palmisano, Giovanni. And the article was included in Journal of Organic Chemistry in 2001.Recommanded Product: 3-Methyl-4-nitroanisole This article mentions the following:

The intermol. [3+2] annulation of azomethine ylides with 2(2-nitrophenyl)acrylate dienophiles followed by reductive heterocyclization affords the spiro(indole-pyrrolidine) ring system. Hence, this enable us to accomplish a concise and highly enantioselective synthesis of (-)-horsfiline, based on chiral auxiliary-directed 锜?face discrimination in the 1,3-dipolar cycloaddition of (1S,2R)-2-phenyl-1-cyclohexyl ester I with N-methylazomethine ylide. In the experiment, the researchers used many compounds, for example, 3-Methyl-4-nitroanisole (cas: 5367-32-8Recommanded Product: 3-Methyl-4-nitroanisole).

3-Methyl-4-nitroanisole (cas: 5367-32-8) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil. The unique properties of ethers (i.e., that they are strongly polar, with nonbonding electron pairs but no hydroxyl group) enhance the formation and use of many reagents. For example, Grignard reagents cannot form unless an ether is present to share its lone pair of electrons with the magnesium atom. Complexation of the magnesium atom stabilizes the Grignard reagent and helps to keep it in solution.Recommanded Product: 3-Methyl-4-nitroanisole

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Rao, Zi-Kun et al. published their research in Journal of Materials Science in 2020 | CAS: 111-77-3

2-(2-Methoxyethoxy)ethanol (cas: 111-77-3) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. Ethyl ether is an excellent solvent for extractions and for a wide variety of chemical reactions. It is also used as a volatile starting fluid for diesel engines and gasoline engines in cold weather. Dimethyl ether is used as a spray propellant and refrigerant. Methyl t-butyl ether (MTBE) is a gasoline additive that boosts the octane number and reduces the amount of nitrogen-oxide pollutants in the exhaust. The ethers of ethylene glycol are used as solvents and plasticizers.Safety of 2-(2-Methoxyethoxy)ethanol

Dual thermo-responsive amphiphilic alternating copolymers: one-pot synthesis and the temperature-induced self-assembly was written by Rao, Zi-Kun;Ni, Hai-liang;Liu, Yu;Li, Yang;Zhu, Hong-Yu;Hao, Jian-Yuan. And the article was included in Journal of Materials Science in 2020.Safety of 2-(2-Methoxyethoxy)ethanol This article mentions the following:

Abstract: Synthesis and self-assembly of stimuli-responsive amphiphilic alternating copolymers (AAC) are an emerging land of tremendous possibilities. Herein, by combining backbone polyethylene glycol (PEG) with pendent oligo-polyglycol simultaneously, two alternating LCST segments are knitted through enzymic synthesis, giving a series of alternating poly[(PEG400-a-succinic acid)-co-(diol(3EG)-a-succinic acid)] (PPSDS) for the first time. All the PPSDSs show only one-step sharp temperature responsiveness in transmittance-temperature curve owing to stabilization effect of PEG400. The cloud points can be linearly controlled by simply adjusting the feeding ratio of PEG400/diol-3EG. Referring to published works and 1H-NMR spectra in D2O, all the obtained AAC formed penetrable nanovesicles under 4鎺矯. The TEM and 1H-NMR results confirmed that when heated to 18鎺矯, PPSDS of “9/1” transformed from nanovesicles to large-compound micelles due to large hydrophobic volume, while other PPSDS of “8/2, 7/3, 6/4” retained the vesicle structures, except that the hydrophilic layer turned from PEG400 + diol(3EG) to PEG400 alone, leading to the size reduction The temperature-controlled size “expansion and contraction” of nanovesicles was unique for AAC, which was potentially good for enhancing loading rate. Further heating above cloud point resulted in the destruction of nanostructures and irregular intermol. aggregations. The first reported dual temperature-responsive AAC was innovative in structure design, providing a potential opportunity for the design and synthesis of controllable self-assemble structures and smart biomacromols. in biomedical applications. In the experiment, the researchers used many compounds, for example, 2-(2-Methoxyethoxy)ethanol (cas: 111-77-3Safety of 2-(2-Methoxyethoxy)ethanol).

2-(2-Methoxyethoxy)ethanol (cas: 111-77-3) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. Ethyl ether is an excellent solvent for extractions and for a wide variety of chemical reactions. It is also used as a volatile starting fluid for diesel engines and gasoline engines in cold weather. Dimethyl ether is used as a spray propellant and refrigerant. Methyl t-butyl ether (MTBE) is a gasoline additive that boosts the octane number and reduces the amount of nitrogen-oxide pollutants in the exhaust. The ethers of ethylene glycol are used as solvents and plasticizers.Safety of 2-(2-Methoxyethoxy)ethanol

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Shanthi, M. et al. published their research in Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy in 2007 | CAS: 1877-75-4

2-(4-Methoxyphenoxy)acetic acid (cas: 1877-75-4) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. But ether is more polar than alkenes. The unique properties of ethers (i.e., that they are strongly polar, with nonbonding electron pairs but no hydroxyl group) enhance the formation and use of many reagents. For example, Grignard reagents cannot form unless an ether is present to share its lone pair of electrons with the magnesium atom. Complexation of the magnesium atom stabilizes the Grignard reagent and helps to keep it in solution.HPLC of Formula: 1877-75-4

Substituent and solvent effects on electronic spectra of some substituted phenoxyacetic acids was written by Shanthi, M.;Kabilan, S.. And the article was included in Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy in 2007.HPLC of Formula: 1877-75-4 This article mentions the following:

The effects of substituents and solvents have been studied through the absorption spectra of nearly 19 p- and o-substituted phenoxyacetic acids in the range of 200-400 nm. The effects of substituent on the absorption spectra of compounds under present investigation are interpreted by correlation of absorption frequencies with simple and extended Hammett equations. Effect of solvent polarity and hydrogen bonding on the absorption spectra are interpreted by means of Kamlet equation and the results are discussed. In the experiment, the researchers used many compounds, for example, 2-(4-Methoxyphenoxy)acetic acid (cas: 1877-75-4HPLC of Formula: 1877-75-4).

2-(4-Methoxyphenoxy)acetic acid (cas: 1877-75-4) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. But ether is more polar than alkenes. The unique properties of ethers (i.e., that they are strongly polar, with nonbonding electron pairs but no hydroxyl group) enhance the formation and use of many reagents. For example, Grignard reagents cannot form unless an ether is present to share its lone pair of electrons with the magnesium atom. Complexation of the magnesium atom stabilizes the Grignard reagent and helps to keep it in solution.HPLC of Formula: 1877-75-4

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Hill, Ronald A. et al. published their research in Journal of Medicinal Chemistry in 1997 | CAS: 5367-32-8

3-Methyl-4-nitroanisole (cas: 5367-32-8) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. But ether is more polar than alkenes. The unique properties of ethers (i.e., that they are strongly polar, with nonbonding electron pairs but no hydroxyl group) enhance the formation and use of many reagents. For example, Grignard reagents cannot form unless an ether is present to share its lone pair of electrons with the magnesium atom. Complexation of the magnesium atom stabilizes the Grignard reagent and helps to keep it in solution.Product Details of 5367-32-8

Structure-Activity Studies for 浼?Amino-3-hydroxy-5-methyl-4-isoxazolepropanoic Acid Receptors: Acidic Hydroxyphenylalanines was written by Hill, Ronald A.;Wallace, Lane J.;Miller, Duane D.;Weinstein, David M.;Shams, Gamal;Tai, Henry;Layer, Richard T.;Willins, David;Uretsky, Norman J.;Danthi, Satyavijayan Narasimhan. And the article was included in Journal of Medicinal Chemistry in 1997.Product Details of 5367-32-8 This article mentions the following:

Antagonists of 浼?amino-3-hydroxy-5-methyl-4-isoxazolepropanoic acid (AMPA) receptors may have therapeutic potential as psychotropic agents. A series of mononitro- and dinitro-2- and 3-hydroxyphenylalanines was prepared, and their activity compared with willardiine, 5-nitrowillardiine, AMPA, and 2,4,5-trihydroxyphenylalanine (6-hydroxydopa) as inhibitors of specific [3H]AMPA and [3H]kainate binding in rat brain homogenates. The most active compounds were highly acidic (pKa 3-4), namely, 2-hydroxy-3,5-dinitro-DL-phenylalanine (13; [3H]AMPA IC50 閳?25 娓璏) and 3-hydroxy-2,4-dinitro-DL-phenylalanine (19; [3H]AMPA IC50 閳?5 娓璏). Two other dinitro-3-hydroxyphenylalanines, and 3,5-dinitro-DL-tyrosine, were considerably less active. Various mononitrohydroxyphenylalanines, which are less acidic, were also less active or inactive, and 2- and 3-hydroxyphenylalanine (o- and m-tyrosine) were inactive. Compounds 13 and 19, DL-willardiine (pKa 9.3, [3H]AMPA IC50 = 2 娓璏), and 5-nitro-DL-willardiine (pKa 6.4, [3H]AMPA IC50 = 0.2 娓璏) displayed AMPA 閳?kainate selectivity in binding studies. Compound 19 was an AMPA-like agonist, but 13 was an antagonist in an AMPA-evoked norepinephrine release assay in rat hippocampal nerve endings. Also, compound 13 injected into the rat ventral pallidum antagonized the locomotor activity elicited by systemic amphetamine. In the experiment, the researchers used many compounds, for example, 3-Methyl-4-nitroanisole (cas: 5367-32-8Product Details of 5367-32-8).

3-Methyl-4-nitroanisole (cas: 5367-32-8) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. But ether is more polar than alkenes. The unique properties of ethers (i.e., that they are strongly polar, with nonbonding electron pairs but no hydroxyl group) enhance the formation and use of many reagents. For example, Grignard reagents cannot form unless an ether is present to share its lone pair of electrons with the magnesium atom. Complexation of the magnesium atom stabilizes the Grignard reagent and helps to keep it in solution.Product Details of 5367-32-8

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem