Kosenko, N. N. et al. published their research in Zhurnal Prikladnoi Khimii (Sankt-Peterburg, Russian Federation) in 1968 | CAS: 20324-33-8

1-((1-((1-Methoxypropan-2-yl)oxy)propan-2-yl)oxy)propan-2-ol (cas: 20324-33-8) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. But on the other hand, ethers undergo cleavage by reaction with acids. At room temperature, ethers are pleasant-smelling colourless liquids. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil.Product Details of 20324-33-8

Gas-liquid chromatographic analysis of the OPSM flotation agent was written by Kosenko, N. N.;Baranova, G. F.;Gurvich, S. M.. And the article was included in Zhurnal Prikladnoi Khimii (Sankt-Peterburg, Russian Federation) in 1968.Product Details of 20324-33-8 This article mentions the following:

OPSM (I) flotation agent is manufactured by condensation of MeOH with propylene oxide. Me ethers of mono-, di-, tri-, tetra-, and pentapropylene glycol present in crude I were determined by gas chromatog. at 210° in 1-m. × 4-mm. column filled with Teflon containing 5% E-301 elastomer, with 1 cc. H/sec. as carrier gas. The sensitivity of the method is 0.1%, and the relative error is <10%. In the experiment, the researchers used many compounds, for example, 1-((1-((1-Methoxypropan-2-yl)oxy)propan-2-yl)oxy)propan-2-ol (cas: 20324-33-8Product Details of 20324-33-8).

1-((1-((1-Methoxypropan-2-yl)oxy)propan-2-yl)oxy)propan-2-ol (cas: 20324-33-8) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. But on the other hand, ethers undergo cleavage by reaction with acids. At room temperature, ethers are pleasant-smelling colourless liquids. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil.Product Details of 20324-33-8

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Inokuma, Yasuhide et al. published their research in Journal of the American Chemical Society in 2008 | CAS: 66943-05-3

1,4,7,10-Tetraoxa-13-azacyclopentadecane (cas: 66943-05-3) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. Ethers feature bent C–O–C linkages. In dimethyl ether, the bond angle is 111° and C–O distances are 141 pm. The barrier to rotation about the C–O bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.Reference of 66943-05-3

meso-(4-(N,N-Dialkylamino)phenyl)-Substituted Subporphyrins: Remarkably Perturbed Absorption Spectra and Enhanced Fluorescence by Intramolecular Charge Transfer Interactions was written by Inokuma, Yasuhide;Easwaramoorthi, Shanmugam;Yoon, Zin Seok;Kim, Dongho;Osuka, Atsuhiro. And the article was included in Journal of the American Chemical Society in 2008.Reference of 66943-05-3 This article mentions the following:

B Meso-(4-(N,N-dibenzylamino)phenyl)-substituted subporphyrins were synthesized by Buchwald-Hartwig amination protocol. Substitution of the amino group at the 4-position of the meso-Ph substituent resulted in a remarkable red shift in the absorption spectra and drastic enhancement of fluorescence intensity probably as a consequence of intramol. CT interaction. These characteristics were used to construct a cation-sensing system by appending a 1-aza-15-crown-5 unit to subporphyrin that displays large spectral changes upon cation binding. In the experiment, the researchers used many compounds, for example, 1,4,7,10-Tetraoxa-13-azacyclopentadecane (cas: 66943-05-3Reference of 66943-05-3).

1,4,7,10-Tetraoxa-13-azacyclopentadecane (cas: 66943-05-3) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. Ethers feature bent C–O–C linkages. In dimethyl ether, the bond angle is 111° and C–O distances are 141 pm. The barrier to rotation about the C–O bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.Reference of 66943-05-3

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Sugimoto, Tomohiro et al. published their research in Bioorganic & Medicinal Chemistry Letters in 2012 | CAS: 1132-95-2

1,1-Diisopropoxycyclohexane (cas: 1132-95-2) belongs to ethers. The oxygen atom in ethers are more electronegative than carbon, thus the hydrogens which are alpha to the ethers are more acidic than the simple hydrocarbons. Ethyl ether is an excellent solvent for extractions and for a wide variety of chemical reactions. It is also used as a volatile starting fluid for diesel engines and gasoline engines in cold weather. Dimethyl ether is used as a spray propellant and refrigerant. Methyl t-butyl ether (MTBE) is a gasoline additive that boosts the octane number and reduces the amount of nitrogen-oxide pollutants in the exhaust. The ethers of ethylene glycol are used as solvents and plasticizers.Related Products of 1132-95-2

Synthesis and antibacterial activity of 6-O-(heteroaryl-isoxazolyl)propynyl 2-fluoro ketolides was written by Sugimoto, Tomohiro;Shimazaki, Yoichi;Manaka, Akira;Tanikawa, Tetsuya;Suzuki, Keiko;Nanaumi, Kayoko;Kaneda, Yoshie;Yamasaki, Yukiko;Sugiyama, Hiroyuki. And the article was included in Bioorganic & Medicinal Chemistry Letters in 2012.Related Products of 1132-95-2 This article mentions the following:

Macrolide antibiotics are widely prescribed for the treatment of respiratory tract infections; however, the increasing prevalence of macrolide-resistant pathogens is a public health concern. Therefore, the development of new macrolide derivatives with activities against resistant pathogens is urgently needed. A series of novel 6-O-(heteroaryl-isoxazolyl)propynyl 2-fluoro ketolides has been synthesized from erythromycin A. These compounds have shown very promising in vitro and in vivo antibacterial activities against key respiratory pathogens including erythromycin-susceptible/resistant strains. In the experiment, the researchers used many compounds, for example, 1,1-Diisopropoxycyclohexane (cas: 1132-95-2Related Products of 1132-95-2).

1,1-Diisopropoxycyclohexane (cas: 1132-95-2) belongs to ethers. The oxygen atom in ethers are more electronegative than carbon, thus the hydrogens which are alpha to the ethers are more acidic than the simple hydrocarbons. Ethyl ether is an excellent solvent for extractions and for a wide variety of chemical reactions. It is also used as a volatile starting fluid for diesel engines and gasoline engines in cold weather. Dimethyl ether is used as a spray propellant and refrigerant. Methyl t-butyl ether (MTBE) is a gasoline additive that boosts the octane number and reduces the amount of nitrogen-oxide pollutants in the exhaust. The ethers of ethylene glycol are used as solvents and plasticizers.Related Products of 1132-95-2

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Kitamura, Masanori et al. published their research in Tetrahedron Letters in 2008 | CAS: 66943-05-3

1,4,7,10-Tetraoxa-13-azacyclopentadecane (cas: 66943-05-3) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. But ether is more polar than alkenes. At room temperature, ethers are pleasant-smelling colourless liquids. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil.Application of 66943-05-3

Combinatorial approach for the design of new, simplified chiral phase-transfer catalysts with high catalytic performance for practical asymmetric synthesis of α-alkyl-α-amino acids was written by Kitamura, Masanori;Arimura, Yuichiro;Shirakawa, Seiji;Maruoka, Keiji. And the article was included in Tetrahedron Letters in 2008.Application of 66943-05-3 This article mentions the following:

A very efficient, chiral phase-transfer catalyst, quaternary ammonium salt I, was prepared from the easily available (S)-1,1′-binaphthyl-2,2′-dicarboxylic acid. I exhibited the high catalytic activity (0.01-0.1 mol %) in the asym. alkylation of N-(diphenylmethylene)glycine tert-Bu ester compared to other existing chiral phase-transfer catalysts. This catalyst will be useful in the enantioselective synthesis of structurally diverse natural and unnatural α-alkyl-α-amino acids. In the experiment, the researchers used many compounds, for example, 1,4,7,10-Tetraoxa-13-azacyclopentadecane (cas: 66943-05-3Application of 66943-05-3).

1,4,7,10-Tetraoxa-13-azacyclopentadecane (cas: 66943-05-3) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. But ether is more polar than alkenes. At room temperature, ethers are pleasant-smelling colourless liquids. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil.Application of 66943-05-3

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Chen, Li-Ping et al. published their research in Organic Chemistry Frontiers in 2022 | CAS: 75581-11-2

4-Iodo-1-methoxy-2-methylbenzene (cas: 75581-11-2) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil. Ethers feature bent C–O–C linkages. In dimethyl ether, the bond angle is 111° and C–O distances are 141 pm. The barrier to rotation about the C–O bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.HPLC of Formula: 75581-11-2

Palladium-catalyzed triple coupling of 2-iodoanisoles with aryl iodides to access 6H-dibenzopyrans was written by Chen, Li-Ping;Cheng, Shu-Lin;Fan, Xin-Yue;Zhu, Ji-Fa;Wang, Bi-Qin;Feng, Chun;Xiang, Shi-Kai. And the article was included in Organic Chemistry Frontiers in 2022.HPLC of Formula: 75581-11-2 This article mentions the following:

A palladium-catalyzed triple coupling of 2-iodoanisoles with aryl iodides was developed. 3-Methyl-2-pyridone was used as a ligand to accelerate the cross-coupling and suppress the homo-coupling of 2-iodoanisoles. A variety of 6H-dibenzopyran derivatives such as I [R = H, F, Cl, etc., R1 = 4-Me, 4-F, 4-MeO, etc.; R2 = 8-Me, 8-Cl, 8-Ph, etc.] was prepared by this method. In the experiment, the researchers used many compounds, for example, 4-Iodo-1-methoxy-2-methylbenzene (cas: 75581-11-2HPLC of Formula: 75581-11-2).

4-Iodo-1-methoxy-2-methylbenzene (cas: 75581-11-2) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil. Ethers feature bent C–O–C linkages. In dimethyl ether, the bond angle is 111° and C–O distances are 141 pm. The barrier to rotation about the C–O bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.HPLC of Formula: 75581-11-2

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Ellis, David D. et al. published their research in Archives of Environmental Contamination and Toxicology in 1982 | CAS: 20324-33-8

1-((1-((1-Methoxypropan-2-yl)oxy)propan-2-yl)oxy)propan-2-ol (cas: 20324-33-8) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. But on the other hand, ethers undergo cleavage by reaction with acids. The unique properties of ethers (i.e., that they are strongly polar, with nonbonding electron pairs but no hydroxyl group) enhance the formation and use of many reagents. For example, Grignard reagents cannot form unless an ether is present to share its lone pair of electrons with the magnesium atom. Complexation of the magnesium atom stabilizes the Grignard reagent and helps to keep it in solution.Application of 20324-33-8

Organic constituents of mutagenic secondary effluents from wastewater treatment plants was written by Ellis, David D.;Jone, Cyrenius M.;Larson, Richard A.;Schaeffer, David J.. And the article was included in Archives of Environmental Contamination and Toxicology in 1982.Application of 20324-33-8 This article mentions the following:

The organic constituents of mutagenically active secondary effluents from industrial plants and publicly-owned treatment works in Illinois were analyzed by capillary gas chromatog. mass spectroscopy. Tentative identification of 243 compounds, 20 of which are US Environmental Protection Agency priority pollutants, was achieved, including 33 not previously reported as water constituents. Among the compounds detected in ≥1 of the effluents were aromatic hydrocarbons, phenols, plasticizers, chloro and bromo compounds, anilines, indoles, and triazine herbicides. However, only N-nitrosodimethylamine  [62-75-9] and o-toluidine  [95-53-4], among the identified compounds, are known to be carcinogens or mutagens. In the experiment, the researchers used many compounds, for example, 1-((1-((1-Methoxypropan-2-yl)oxy)propan-2-yl)oxy)propan-2-ol (cas: 20324-33-8Application of 20324-33-8).

1-((1-((1-Methoxypropan-2-yl)oxy)propan-2-yl)oxy)propan-2-ol (cas: 20324-33-8) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. But on the other hand, ethers undergo cleavage by reaction with acids. The unique properties of ethers (i.e., that they are strongly polar, with nonbonding electron pairs but no hydroxyl group) enhance the formation and use of many reagents. For example, Grignard reagents cannot form unless an ether is present to share its lone pair of electrons with the magnesium atom. Complexation of the magnesium atom stabilizes the Grignard reagent and helps to keep it in solution.Application of 20324-33-8

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Gu, Xue Ping et al. published their research in Journal of Organic Chemistry in 1986 | CAS: 60221-37-6

2-(2-(2-((Tetrahydro-2H-pyran-2-yl)oxy)ethoxy)ethoxy)ethan-1-ol (cas: 60221-37-6) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive. The unique properties of ethers (i.e., that they are strongly polar, with nonbonding electron pairs but no hydroxyl group) enhance the formation and use of many reagents. For example, Grignard reagents cannot form unless an ether is present to share its lone pair of electrons with the magnesium atom. Complexation of the magnesium atom stabilizes the Grignard reagent and helps to keep it in solution.Safety of 2-(2-(2-((Tetrahydro-2H-pyran-2-yl)oxy)ethoxy)ethoxy)ethan-1-ol

2-Chloro-1-(chloromethyl)ethyl methoxymethyl ether as a reagent for acetonylation of alcohols and phenol was written by Gu, Xue Ping;Ikeda, Isao;Komada, Satoru;Masuyama, Araki;Okahara, Mitsuo. And the article was included in Journal of Organic Chemistry in 1986.Safety of 2-(2-(2-((Tetrahydro-2H-pyran-2-yl)oxy)ethoxy)ethoxy)ethan-1-ol This article mentions the following:

Treatment of ROH [R = decyl, cyclohexyl, Ph, Me3C, Me(CH2)9OCH2(CH2OCH2)3CH2OH, etc.] with ClCH2CH(CH2Cl)OCH2OMe (I), Bu4N+ HSO4, and a base (e.g., NaOH) gave ROCH2C(:CH2)OCH2OMe, which were treated with aqueous H2SO4 to give 42-83% ROCH2COMe. Similar treatment of HOCH2(CH2OCH2)2CH2OH with I, but without Bu4N+ HSO4, gave 61% MeCOCH2OCH2(CH2OCH2)2CH2OCH2COMe. In the experiment, the researchers used many compounds, for example, 2-(2-(2-((Tetrahydro-2H-pyran-2-yl)oxy)ethoxy)ethoxy)ethan-1-ol (cas: 60221-37-6Safety of 2-(2-(2-((Tetrahydro-2H-pyran-2-yl)oxy)ethoxy)ethoxy)ethan-1-ol).

2-(2-(2-((Tetrahydro-2H-pyran-2-yl)oxy)ethoxy)ethoxy)ethan-1-ol (cas: 60221-37-6) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive. The unique properties of ethers (i.e., that they are strongly polar, with nonbonding electron pairs but no hydroxyl group) enhance the formation and use of many reagents. For example, Grignard reagents cannot form unless an ether is present to share its lone pair of electrons with the magnesium atom. Complexation of the magnesium atom stabilizes the Grignard reagent and helps to keep it in solution.Safety of 2-(2-(2-((Tetrahydro-2H-pyran-2-yl)oxy)ethoxy)ethoxy)ethan-1-ol

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Caldeira, M. et al. published their research in Journal of Chromatography A in 2011 | CAS: 20324-33-8

1-((1-((1-Methoxypropan-2-yl)oxy)propan-2-yl)oxy)propan-2-ol (cas: 20324-33-8) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. But on the other hand, ethers undergo cleavage by reaction with acids. Ethers feature bent C–O–C linkages. In dimethyl ether, the bond angle is 111° and C–O distances are 141 pm. The barrier to rotation about the C–O bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.Category: ethers-buliding-blocks

Profiling allergic asthma volatile metabolic patterns using a headspace-solid phase microextraction/gas chromatography based methodology was written by Caldeira, M.;Barros, A. S.;Bilelo, M. J.;Parada, A.;Camara, J. S.;Rocha, S. M.. And the article was included in Journal of Chromatography A in 2011.Category: ethers-buliding-blocks This article mentions the following:

Allergic asthma represents an important public health issue with significant growth over the years, especially in the pediatric population. Exhaled breath is a non-invasive, easily performed and rapid method for obtaining samples from the lower respiratory tract. In the present manuscript, the metabolic volatile profiles of allergic asthma and control children were evaluated by headspace solid-phase microextraction combined with gas chromatog.-quadrupole mass spectrometry (HS-SPME/GC-qMS). The lack of studies in breath of allergic asthmatic children by HS-SPME led to the development of an exptl. design to optimize SPME parameters. To fulfil this objective, three important HS-SPME exptl. parameters that influence the extraction efficiency, namely fiber coating, temperature and time extractions were considered. The selected conditions that promoted higher extraction efficiency corresponding to the higher GC peak areas and number of compounds were: DVB/CAR/PDMS coating fiber, 22° and 60 min as the extraction temperature and time, resp. The suitability of two containers, 1 L Tedlar bags and BIOVOC for breath collection and intra-individual variability were also investigated. The developed methodol. was then applied to the anal. of children exhaled breath with allergic asthma (35), from which 13 had also allergic rhinitis, and healthy control children (15), allowing to identify 44 volatiles distributed over the chem. families of alkanes (linear and ramified) ketones, aromatic hydrocarbons, aldehydes, acids, among others. Multivariate studies were performed by Partial Least Squares-Discriminant Anal. (PLS-DA) using a set of 28 selected metabolites and discrimination between allergic asthma and control children was attained with a classification rate of 88%. The allergic asthma pediatric population was characterized mainly by the compounds linked to oxidative stress, such as alkanes and aldehydes. Furthermore, more detailed information was achieved combining the volatile metabolic data, suggested by PLS-DA model, and clin. data. In the experiment, the researchers used many compounds, for example, 1-((1-((1-Methoxypropan-2-yl)oxy)propan-2-yl)oxy)propan-2-ol (cas: 20324-33-8Category: ethers-buliding-blocks).

1-((1-((1-Methoxypropan-2-yl)oxy)propan-2-yl)oxy)propan-2-ol (cas: 20324-33-8) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. But on the other hand, ethers undergo cleavage by reaction with acids. Ethers feature bent C–O–C linkages. In dimethyl ether, the bond angle is 111° and C–O distances are 141 pm. The barrier to rotation about the C–O bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.Category: ethers-buliding-blocks

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Shideman, F. E. et al. published their research in Journal of Pharmacology and Experimental Therapeutics in 1951 | CAS: 20324-33-8

1-((1-((1-Methoxypropan-2-yl)oxy)propan-2-yl)oxy)propan-2-ol (cas: 20324-33-8) belongs to ethers. The oxygen atom in ethers are more electronegative than carbon, thus the hydrogens which are alpha to the ethers are more acidic than the simple hydrocarbons. At room temperature, ethers are pleasant-smelling colourless liquids. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil.Recommanded Product: 1-((1-((1-Methoxypropan-2-yl)oxy)propan-2-yl)oxy)propan-2-ol

Pharmacology of the monomethyl ethers of mono-, di-, and tripropylene glycol in the dog with observations of the auricular fibrillation produced by these compounds was written by Shideman, F. E.;Procita, Leonard. And the article was included in Journal of Pharmacology and Experimental Therapeutics in 1951.Recommanded Product: 1-((1-((1-Methoxypropan-2-yl)oxy)propan-2-yl)oxy)propan-2-ol This article mentions the following:

In dogs, the above compounds are central nervous system and cardiac depressants of low toxicity. Death in the intact animal results from respiratory failure. In the anesthetized, artificially respired dog appropriate intravenous doses consistently produce auricular fibrillation. Auricular anoxia, depressed conduction and heart block with ventricular asystole, and increased intra-auricular pressure all appear to be important factors in production of this arrhythmia. In the experiment, the researchers used many compounds, for example, 1-((1-((1-Methoxypropan-2-yl)oxy)propan-2-yl)oxy)propan-2-ol (cas: 20324-33-8Recommanded Product: 1-((1-((1-Methoxypropan-2-yl)oxy)propan-2-yl)oxy)propan-2-ol).

1-((1-((1-Methoxypropan-2-yl)oxy)propan-2-yl)oxy)propan-2-ol (cas: 20324-33-8) belongs to ethers. The oxygen atom in ethers are more electronegative than carbon, thus the hydrogens which are alpha to the ethers are more acidic than the simple hydrocarbons. At room temperature, ethers are pleasant-smelling colourless liquids. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil.Recommanded Product: 1-((1-((1-Methoxypropan-2-yl)oxy)propan-2-yl)oxy)propan-2-ol

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Eustathopoulos, Helene et al. published their research in Journal of the Chemical Society in 1983 | CAS: 75581-11-2

4-Iodo-1-methoxy-2-methylbenzene (cas: 75581-11-2) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. But ether is more polar than alkenes. At room temperature, ethers are pleasant-smelling colourless liquids. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil.Quality Control of 4-Iodo-1-methoxy-2-methylbenzene

Ambident reactivity of anisole and p-iodoanisole toward phenylium cations and evidence for ipso-attack in cationic phenylation was written by Eustathopoulos, Helene;Court, Jean;Bonnier, Jane Marie. And the article was included in Journal of the Chemical Society, Perkin Transactions 2: Physical Organic Chemistry (1972-1999) in 1983.Quality Control of 4-Iodo-1-methoxy-2-methylbenzene This article mentions the following:

The phenylation of p-IC6H4OMe in the thermolysis of PhN2BF4 gave, inter alia,p-MeOC6H4Ph and 4-IC6H4OPh, showing ipso-attack and attack on O by Ph+. With PhOMe, the O atom of the MeO substituent is also attacked by Ph+ giving Ph2O through the initial formation of Ph2O+Me followed by intermol. demethylation. No intramol. rearrangement occurs with the oxonium ion. The mechanism involves kinetically predominant C-phenylation of both substrates. BF3 promotes deiodination of p-IC6H4OMe and its phenylated isomers. This deiodination invalidates the conclusions drawn from isomer distributions; therefore the presence of BF3 must be carefully controlled in a mechanistic study. In the experiment, the researchers used many compounds, for example, 4-Iodo-1-methoxy-2-methylbenzene (cas: 75581-11-2Quality Control of 4-Iodo-1-methoxy-2-methylbenzene).

4-Iodo-1-methoxy-2-methylbenzene (cas: 75581-11-2) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. But ether is more polar than alkenes. At room temperature, ethers are pleasant-smelling colourless liquids. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil.Quality Control of 4-Iodo-1-methoxy-2-methylbenzene

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem