Wei, Xing-yue et al. published their research in Journal of Chemical Research in 2008 | CAS: 66943-05-3

1,4,7,10-Tetraoxa-13-azacyclopentadecane (cas: 66943-05-3) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. But on the other hand, ethers undergo cleavage by reaction with acids. The unique properties of ethers (i.e., that they are strongly polar, with nonbonding electron pairs but no hydroxyl group) enhance the formation and use of many reagents. For example, Grignard reagents cannot form unless an ether is present to share its lone pair of electrons with the magnesium atom. Complexation of the magnesium atom stabilizes the Grignard reagent and helps to keep it in solution.Product Details of 66943-05-3

Dioxygen affinities and catalytic oxidation performance of unsymmetrical bis-Schiff base transition-metal complexes with aza-crown pendant groups was written by Wei, Xing-yue;Qin, Sheng-ying. And the article was included in Journal of Chemical Research in 2008.Product Details of 66943-05-3 This article mentions the following:

CoII and MnIII complexes with aza-crown substituted, unsym. bis-Schiff base ligands were synthesized starting from monoaza-15-crown-5 or benzo-10-aza-15-crown-5. The saturated oxygen uptake of the CoII complexes [CoL1]-[CoL4] in diethyleneglycol/dimethyl ether solution were determined at different temperatures The oxygenation constant (Ko2) and thermodn. parameters (ΔH°, ΔS°) were calculated The MnIII complexes ([MnL1Cl]-[MnL4Cl]) were employed to catalyze styrene oxidation using mol. oxygen at ambient temperature and pressure. The modulation of O2-binding capabilities and catalytic oxidation performance by the aza-crown ether pendant groups in [ML3] and [ML4] were studied as compared with the parent complexes [ML1] and morpholino-substituted analog [ML2]. The dioxygen affinities and catalytic oxidation activities of [CoL3] and [CoL4] were much more enhanced by aza-crown pendants. Moreover, the O2-binding capabilities of [CoL3] and [CoL4] were also improved by adding alkali metal cations (Li+, Na+ and K+) to the system, and adding Na+ shows the most significant enhancement of dioxygen affinities. Likewise, [MnL3Cl] and [MnL4Cl] exhibit the best catalytic activities: the conversion of styrene to benzaldehyde are up to 41.2% and 45.8% with >99% selectivity. In the experiment, the researchers used many compounds, for example, 1,4,7,10-Tetraoxa-13-azacyclopentadecane (cas: 66943-05-3Product Details of 66943-05-3).

1,4,7,10-Tetraoxa-13-azacyclopentadecane (cas: 66943-05-3) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. But on the other hand, ethers undergo cleavage by reaction with acids. The unique properties of ethers (i.e., that they are strongly polar, with nonbonding electron pairs but no hydroxyl group) enhance the formation and use of many reagents. For example, Grignard reagents cannot form unless an ether is present to share its lone pair of electrons with the magnesium atom. Complexation of the magnesium atom stabilizes the Grignard reagent and helps to keep it in solution.Product Details of 66943-05-3

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Bauduin, P. et al. published their research in Journal of Molecular Liquids in 2004 | CAS: 20324-33-8

1-((1-((1-Methoxypropan-2-yl)oxy)propan-2-yl)oxy)propan-2-ol (cas: 20324-33-8) belongs to ethers. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides. Electron-deficient reagents are also stabilized by ethers. For example, borane (BH3) is a useful reagent for making alcohols. Pure borane exists as its dimer, diborane (B2H6), a toxic gas that is inconvenient and hazardous to use. Borane forms stable complexes with ethers, however, and it is often supplied and used as its liquid complex with tetrahydrofuran (THF).Application of 20324-33-8

Temperature dependence of industrial propylene glycol alkyl ether/water mixtures was written by Bauduin, P.;Wattebled, L.;Schrodle, S.;Touraud, D.;Kunz, W.. And the article was included in Journal of Molecular Liquids in 2004.Application of 20324-33-8 This article mentions the following:

The miscibility of ten industrially used propylene glycol ethers with water is studied in the temperature range between 0 and 80 °C. Several of these systems show a lower critical point of demixing near room temperature The shapes of the phase diagrams are discussed in detail and compared to those of the widely used but potentially toxic ethylene glycol alkyl ether/water mixtures In the experiment, the researchers used many compounds, for example, 1-((1-((1-Methoxypropan-2-yl)oxy)propan-2-yl)oxy)propan-2-ol (cas: 20324-33-8Application of 20324-33-8).

1-((1-((1-Methoxypropan-2-yl)oxy)propan-2-yl)oxy)propan-2-ol (cas: 20324-33-8) belongs to ethers. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides. Electron-deficient reagents are also stabilized by ethers. For example, borane (BH3) is a useful reagent for making alcohols. Pure borane exists as its dimer, diborane (B2H6), a toxic gas that is inconvenient and hazardous to use. Borane forms stable complexes with ethers, however, and it is often supplied and used as its liquid complex with tetrahydrofuran (THF).Application of 20324-33-8

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Eshghi, Hossein et al. published their research in Chinese Chemical Letters in 2008 | CAS: 60221-37-6

2-(2-(2-((Tetrahydro-2H-pyran-2-yl)oxy)ethoxy)ethoxy)ethan-1-ol (cas: 60221-37-6) belongs to ethers. The oxygen atom in ethers are more electronegative than carbon, thus the hydrogens which are alpha to the ethers are more acidic than the simple hydrocarbons. Ethers can form hydrogen bonds with other molecules (alcohols, amines, etc.) that have O―H or N―H bonds. The ability to form hydrogen bonds with other compounds makes ethers particularly good solvents for a wide variety of organic compounds and a surprisingly large number of inorganic compounds.SDS of cas: 60221-37-6

Selective monotetrahydropyranylation of symmetrical diols using P2O5/SiO2 under solvent-free conditions and their depyranylation was written by Eshghi, Hossein;Rahimizadeh, Mohammad;Saberi, Sattar. And the article was included in Chinese Chemical Letters in 2008.SDS of cas: 60221-37-6 This article mentions the following:

Selective protection of one of the hydroxyl group in 1,n-sym. diols is achieved by P2O5/SiO2-catalyzed reaction of the diol with dihydropyran under solvent-free conditions at room temperature This selective protection is simple and it occurred under economically cheap conditions in high yield. The deprotected diol is simply obtained by refluxing of this compound in methanol using the same catalyst without any byproduct formation or addnl. purifications. In the experiment, the researchers used many compounds, for example, 2-(2-(2-((Tetrahydro-2H-pyran-2-yl)oxy)ethoxy)ethoxy)ethan-1-ol (cas: 60221-37-6SDS of cas: 60221-37-6).

2-(2-(2-((Tetrahydro-2H-pyran-2-yl)oxy)ethoxy)ethoxy)ethan-1-ol (cas: 60221-37-6) belongs to ethers. The oxygen atom in ethers are more electronegative than carbon, thus the hydrogens which are alpha to the ethers are more acidic than the simple hydrocarbons. Ethers can form hydrogen bonds with other molecules (alcohols, amines, etc.) that have O―H or N―H bonds. The ability to form hydrogen bonds with other compounds makes ethers particularly good solvents for a wide variety of organic compounds and a surprisingly large number of inorganic compounds.SDS of cas: 60221-37-6

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Zhang, Ning et al. published their research in European Journal of Medicinal Chemistry in 2018 | CAS: 365564-07-4

2-(3,5-Dimethoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (cas: 365564-07-4) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. Ethyl ether is an excellent solvent for extractions and for a wide variety of chemical reactions. It is also used as a volatile starting fluid for diesel engines and gasoline engines in cold weather. Dimethyl ether is used as a spray propellant and refrigerant. Methyl t-butyl ether (MTBE) is a gasoline additive that boosts the octane number and reduces the amount of nitrogen-oxide pollutants in the exhaust. The ethers of ethylene glycol are used as solvents and plasticizers.Recommanded Product: 365564-07-4

Difuran-substituted quinoxalines as a novel class of PI3Kα H1047R mutant inhibitors: Synthesis, biological evaluation and structure-activity relationship was written by Zhang, Ning;Yu, Zhimei;Yang, Xiaohong;Zhou, Yan;Tang, Qing;Hu, Ping;Wang, Jia;Zhang, Shao-Lin;Wang, Ming-Wei;He, Yun. And the article was included in European Journal of Medicinal Chemistry in 2018.Recommanded Product: 365564-07-4 This article mentions the following:

Phosphatidylinositol 3-kinase α (PI3Kα) is the most frequently mutated kinase in human cancers, making it an attractive therapeutic target for cancer treatment. The authors identified a structurally novel PI3Kα H1047R mutant inhibitor Hit-01 (5,7-dichloro-2,3-di(furan-2-yl)quinoxaline) (EC50 = 76.0 μM) through a high-throughput screening campaign. Chem. optimizations enabled the authors to discover compound 7b (6-bromo-7-(2-fluorophenyl)-2,3-di(furan-2-yl)quinoxaline), which strongly inhibited PI3Kα H1047R mutant with an EC50 value of 0.137 μM, over 500-fold more potent than Hit-01. Western blotting anal. suggested that 7b could decrease the phosphorylation level of p-AKT, another proof that 7b inhibited PI3Kα H1047R function. Cell viability assay revealed that 7b inhibited HCT116 cancer cell growth with an IC50 value of 11.23 μM. In addition, 7b was found to arrest cell cycle at G1 phase and induce cell apoptosis via up-regulation of caspase-3, caspase-8 and caspase-9 protein expressions. Collectively, all these data demonstrated that 7b could be a promising lead for the development of structurally novel PI3Kα inhibitors. In the experiment, the researchers used many compounds, for example, 2-(3,5-Dimethoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (cas: 365564-07-4Recommanded Product: 365564-07-4).

2-(3,5-Dimethoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (cas: 365564-07-4) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. Ethyl ether is an excellent solvent for extractions and for a wide variety of chemical reactions. It is also used as a volatile starting fluid for diesel engines and gasoline engines in cold weather. Dimethyl ether is used as a spray propellant and refrigerant. Methyl t-butyl ether (MTBE) is a gasoline additive that boosts the octane number and reduces the amount of nitrogen-oxide pollutants in the exhaust. The ethers of ethylene glycol are used as solvents and plasticizers.Recommanded Product: 365564-07-4

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Ikeda, Taichi et al. published their research in Polymer Chemistry in 2021 | CAS: 60221-37-6

2-(2-(2-((Tetrahydro-2H-pyran-2-yl)oxy)ethoxy)ethoxy)ethan-1-ol (cas: 60221-37-6) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides.Application In Synthesis of 2-(2-(2-((Tetrahydro-2H-pyran-2-yl)oxy)ethoxy)ethoxy)ethan-1-ol

Poly(ionic liquid)s with branched side chains: polymer design for breaking the conventional record of ionic conductivity was written by Ikeda, Taichi. And the article was included in Polymer Chemistry in 2021.Application In Synthesis of 2-(2-(2-((Tetrahydro-2H-pyran-2-yl)oxy)ethoxy)ethoxy)ethan-1-ol This article mentions the following:

Poly(ionic liquid)s with non-branched, di-branched, and tri-branched side chains were synthesized using cationic glycidyl triazolyl polymers (GTPs). Based on the analyses of these cationic GTPs, the effects of side-chain branching on phys. properties, such as glass transition temperature and ionic conductivity, were discussed. It was confirmed that the ionic conductivity increased with the degree of side-chain branching. Despite being a high-mol.-weight polymer (1.9 x 106 Da), GTP with tri-branched side chains exhibited a high ionic conductivity of 3.6 x 10-5 M at 25°C under dry conditions, which is higher than the benchmark value of the conventional poly(ionic liquid)s proposed by Shaplov, Marcilla, and Mecerreyes (3.0 x 10-5 M at 25°C, dry conditions, mol. weight >105 Da). From the anal. based on the electrode polarization model, the higher ionic conductivity of cationic GTPs with branched side chains can be attributed to their higher conducting ion mobility in the polymer matrix. These results indicate that side-chain branching is effective in breaking the conventional limit of ionic conductivity of poly(ionic liquid)s. In the experiment, the researchers used many compounds, for example, 2-(2-(2-((Tetrahydro-2H-pyran-2-yl)oxy)ethoxy)ethoxy)ethan-1-ol (cas: 60221-37-6Application In Synthesis of 2-(2-(2-((Tetrahydro-2H-pyran-2-yl)oxy)ethoxy)ethoxy)ethan-1-ol).

2-(2-(2-((Tetrahydro-2H-pyran-2-yl)oxy)ethoxy)ethoxy)ethan-1-ol (cas: 60221-37-6) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides.Application In Synthesis of 2-(2-(2-((Tetrahydro-2H-pyran-2-yl)oxy)ethoxy)ethoxy)ethan-1-ol

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Iwao, Masatomo et al. published their research in Heterocycles in 1994 | CAS: 56619-93-3

N-(3-Methoxyphenyl)pivalamide (cas: 56619-93-3) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. But on the other hand, ethers undergo cleavage by reaction with acids. Ethers feature bent C–O–C linkages. In dimethyl ether, the bond angle is 111° and C–O distances are 141 pm. The barrier to rotation about the C–O bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.Recommanded Product: N-(3-Methoxyphenyl)pivalamide

A new method for the construction of indole nucleus was written by Iwao, Masatomo. And the article was included in Heterocycles in 1994.Recommanded Product: N-(3-Methoxyphenyl)pivalamide This article mentions the following:

Directed lithiation of N-tert-butoxycarbonylanilines I (X = H, Y = H, F, MeO; X = Me, CF3, MeO, Cl, F, Y = H) and subsequent reaction with 1-tert-butyldimethylsilyl-1-phenylsulfinylethene gave the conjugate addition products which, without isolation, were cyclized to 1-tert-butoxycarbonyl-2-(phenylthio)indolines II under thermal sila-Pummerer reaction conditions. In the experiment, the researchers used many compounds, for example, N-(3-Methoxyphenyl)pivalamide (cas: 56619-93-3Recommanded Product: N-(3-Methoxyphenyl)pivalamide).

N-(3-Methoxyphenyl)pivalamide (cas: 56619-93-3) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. But on the other hand, ethers undergo cleavage by reaction with acids. Ethers feature bent C–O–C linkages. In dimethyl ether, the bond angle is 111° and C–O distances are 141 pm. The barrier to rotation about the C–O bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.Recommanded Product: N-(3-Methoxyphenyl)pivalamide

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Deli, Dario et al. published their research in Reactive & Functional Polymers in 2012 | CAS: 66943-05-3

1,4,7,10-Tetraoxa-13-azacyclopentadecane (cas: 66943-05-3) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. But on the other hand, ethers undergo cleavage by reaction with acids. Ethyl ether is an excellent solvent for extractions and for a wide variety of chemical reactions. It is also used as a volatile starting fluid for diesel engines and gasoline engines in cold weather. Dimethyl ether is used as a spray propellant and refrigerant. Methyl t-butyl ether (MTBE) is a gasoline additive that boosts the octane number and reduces the amount of nitrogen-oxide pollutants in the exhaust. The ethers of ethylene glycol are used as solvents and plasticizers.Name: 1,4,7,10-Tetraoxa-13-azacyclopentadecane

Selective removal of 90Sr and 60Co from aqueous solution using N-aza-crown ether functional poly(NIPAM) hydrogels was written by Deli, Dario;Law, Kathleen;Liu, Zuguang;Crouch, David J.;Livens, Francis R.;Yeates, Stephen G.. And the article was included in Reactive & Functional Polymers in 2012.Name: 1,4,7,10-Tetraoxa-13-azacyclopentadecane This article mentions the following:

The ability of temperature and pH responsive cross-linked poly(NIPAM-co-AAc) hydrogel beads containing covalently bound N-aza-crown ethers to selectively complex 90Sr and 60Co under competitive and non-competitive conditions is demonstrated using a combination of autoradiog. and scintillation measurements. Due to the presence of copolymerized acrylic acid, which is incorporated to introduce pH responsive behavior as well as acting as the site of covalent attachment of the N-aza-crown ether, the decrease in particle diameter as a function of increasing temperature on going through the LCST of PNIPAM is reduced in the presence of electrolyte. At pH 2 no complexation of either 90Sr or 60Co was observed At pH 7 the incorporation of acrylic acid under non-competitive conditions results in the ability to complex ca. 90% 90Sr and 60Co which increases to between 94% and 96% on inclusion of N-aza-crown ether. Under competitive conditions the hydrogels lose the ability to selectively complex 90Sr, although the selectivity for 60Co was enhanced in the presence of N-aza-crown ether. Subsequent recovery of bound 60Co from the hydrogel on lowering to pH 2 was only partially successful, and lead to a decrease in the swelling behavior on readjustment to pH 7. In the experiment, the researchers used many compounds, for example, 1,4,7,10-Tetraoxa-13-azacyclopentadecane (cas: 66943-05-3Name: 1,4,7,10-Tetraoxa-13-azacyclopentadecane).

1,4,7,10-Tetraoxa-13-azacyclopentadecane (cas: 66943-05-3) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. But on the other hand, ethers undergo cleavage by reaction with acids. Ethyl ether is an excellent solvent for extractions and for a wide variety of chemical reactions. It is also used as a volatile starting fluid for diesel engines and gasoline engines in cold weather. Dimethyl ether is used as a spray propellant and refrigerant. Methyl t-butyl ether (MTBE) is a gasoline additive that boosts the octane number and reduces the amount of nitrogen-oxide pollutants in the exhaust. The ethers of ethylene glycol are used as solvents and plasticizers.Name: 1,4,7,10-Tetraoxa-13-azacyclopentadecane

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Leong, Sze Wei et al. published their research in Bioorganic & Medicinal Chemistry Letters in 2018 | CAS: 6972-61-8

3-(2,4-Dimethoxyphenyl)acrylic acid (cas: 6972-61-8) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. At room temperature, ethers are pleasant-smelling colourless liquids. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil.Application In Synthesis of 3-(2,4-Dimethoxyphenyl)acrylic acid

In vitro and in silico evaluations of diarylpentanoid series as α-glucosidase inhibitor was written by Leong, Sze Wei;Abas, Faridah;Lam, Kok Wai;Yusoff, Khatijah. And the article was included in Bioorganic & Medicinal Chemistry Letters in 2018.Application In Synthesis of 3-(2,4-Dimethoxyphenyl)acrylic acid This article mentions the following:

A series of thirty-four diarylpentanoids derivatives were synthesized and evaluated for their α-glucosidase inhibitory activity. Eleven compounds were found to significantly inhibit α-glucosidase in which some compounds demonstrated the highest activity with IC50 values ranging from 14.1 to 15.1 μM. Structure-activity comparison shows that multiple hydroxy groups are essential for α-glucosidase inhibitory activity. Meanwhile, 3,4-dihydroxyphenyl and furanyl moieties were found to be crucial in improving α-glucosidase inhibition. Mol. docking analyses further confirmed the critical role of both 3,4-dihydroxyphenyl and furanyl moieties as they bound to α-glucosidase active site in different mode. Overall result suggests that diarylpentanoids with both five membered heterocyclic ring and polyhydroxyphenyl moiety could be a new lead design in the search of novel α-glucosidase inhibitor. In the experiment, the researchers used many compounds, for example, 3-(2,4-Dimethoxyphenyl)acrylic acid (cas: 6972-61-8Application In Synthesis of 3-(2,4-Dimethoxyphenyl)acrylic acid).

3-(2,4-Dimethoxyphenyl)acrylic acid (cas: 6972-61-8) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. At room temperature, ethers are pleasant-smelling colourless liquids. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil.Application In Synthesis of 3-(2,4-Dimethoxyphenyl)acrylic acid

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Lochman, Lukas et al. published their research in ACS Sensors in 2019 | CAS: 66943-05-3

1,4,7,10-Tetraoxa-13-azacyclopentadecane (cas: 66943-05-3) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. But on the other hand, ethers undergo cleavage by reaction with acids. Ethyl ether is an excellent solvent for extractions and for a wide variety of chemical reactions. It is also used as a volatile starting fluid for diesel engines and gasoline engines in cold weather. Dimethyl ether is used as a spray propellant and refrigerant. Methyl t-butyl ether (MTBE) is a gasoline additive that boosts the octane number and reduces the amount of nitrogen-oxide pollutants in the exhaust. The ethers of ethylene glycol are used as solvents and plasticizers.Name: 1,4,7,10-Tetraoxa-13-azacyclopentadecane

Red-Emitting Fluorescence Sensors for Metal Cations: The Role of Counteranions and Sensing of SCN in Biological Materials was written by Lochman, Lukas;Machacek, Miloslav;Miletin, Miroslav;Uhlirova, Stepanka;Lang, Kamil;Kirakci, Kaplan;Zimcik, Petr;Novakova, Veronika. And the article was included in ACS Sensors in 2019.Name: 1,4,7,10-Tetraoxa-13-azacyclopentadecane This article mentions the following:

The spatiotemporal sensing of specific cationic and anionic species is crucial for understanding the processes occurring in living systems. Herein, the authors developed new fluorescence sensors derived from tetrapyrazinoporphyrazines (TPyzPzs) with a recognition moiety that consists of an aza-crown and supporting substituents. Their sensitivity and selectivity were compared by fluorescence titration experiments with the properties of known TPyzPzs (with either one aza-crown moiety or two of these moieties in a tweezer arrangement). Method of standard addition was employed for analyte quantification in saliva. For K+ recognition, the new derivatives had comparable or larger association constants with larger fluorescence enhancement factors compared to that with one aza-crown. Their fluorescence quantum yields in the ON state were 18× higher than that of TPyzPzs with a tweezer arrangement. Importantly, the sensitivity toward cations was strongly dependent on counteranions and increased as follows: NO3 < Br < CF3SO3 < ClO4 â‰?SCN. This trend resembles the chaotropic ability expressed by the Hofmeister series. The high selectivity toward KSCN was explained by synergic association of both K+ and SCN with TPyzPz sensors. The sensing of SCN was further exploited in a proof of concept study to quantify SCN levels in the saliva of a smoker and to demonstrate the sensing ability of TPyzPzs under in vitro conditions. In the experiment, the researchers used many compounds, for example, 1,4,7,10-Tetraoxa-13-azacyclopentadecane (cas: 66943-05-3Name: 1,4,7,10-Tetraoxa-13-azacyclopentadecane).

1,4,7,10-Tetraoxa-13-azacyclopentadecane (cas: 66943-05-3) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. But on the other hand, ethers undergo cleavage by reaction with acids. Ethyl ether is an excellent solvent for extractions and for a wide variety of chemical reactions. It is also used as a volatile starting fluid for diesel engines and gasoline engines in cold weather. Dimethyl ether is used as a spray propellant and refrigerant. Methyl t-butyl ether (MTBE) is a gasoline additive that boosts the octane number and reduces the amount of nitrogen-oxide pollutants in the exhaust. The ethers of ethylene glycol are used as solvents and plasticizers.Name: 1,4,7,10-Tetraoxa-13-azacyclopentadecane

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Komsta, L. et al. published their research in Acta Chromatographica in 2009 | CAS: 6972-61-8

3-(2,4-Dimethoxyphenyl)acrylic acid (cas: 6972-61-8) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. Autoxidation is the spontaneous oxidation of a compound in air. In the presence of oxygen, ethers slowly autoxidize to form hydroperoxides and dialkyl peroxides. If concentrated or heated, these peroxides may explode. To prevent such explosions, ethers should be obtained in small quantities, kept in tightly sealed containers, and used promptly.Recommanded Product: 6972-61-8

The kernel density estimate as a measure of the performance of one and two-dimensional TLC systems with large retention datasets in the context of their use in fingerprinting was written by Komsta, L.;Szewczyk, K.. And the article was included in Acta Chromatographica in 2009.Recommanded Product: 6972-61-8 This article mentions the following:

A new objective chromatog. response function, RK, based on the kernel d. estimate, is introduced for estimation of the fingerprinting performance of a particular TLC system (uniformity of retention) for which a large set of exptl. RF values of possible components of the mixture is available. The RK criterion is insensitive to large numbers (hundreds or thousands) of RF values, when the previously proposed criteria cease. It can be applied to one and two-dimensional TLC and is easily computed. As an example of its application, the performance of twelve general screening systems was evaluated in the context of herbal extract fingerprinting (88 phytochem. standards) by both one and two-dimensional TLC. In the experiment, the researchers used many compounds, for example, 3-(2,4-Dimethoxyphenyl)acrylic acid (cas: 6972-61-8Recommanded Product: 6972-61-8).

3-(2,4-Dimethoxyphenyl)acrylic acid (cas: 6972-61-8) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. Autoxidation is the spontaneous oxidation of a compound in air. In the presence of oxygen, ethers slowly autoxidize to form hydroperoxides and dialkyl peroxides. If concentrated or heated, these peroxides may explode. To prevent such explosions, ethers should be obtained in small quantities, kept in tightly sealed containers, and used promptly.Recommanded Product: 6972-61-8

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem