Pipertzis, Achilleas’s team published research in Macromolecules (Washington, DC, United States) in 2021-05-11 | CAS: 23783-42-8

Macromolecules (Washington, DC, United States) published new progress about Diffusion. 23783-42-8 belongs to class ethers-buliding-blocks, name is 2,5,8,11-Tetraoxatridecan-13-ol, and the molecular formula is C9H20O5, COA of Formula: C9H20O5.

Pipertzis, Achilleas published the artcileIonic Conductivity in Polyfluorene-Based Diblock Copolymers Comprising Nanodomains of a Polymerized Ionic Liquid and a Solid Polymer Electrolyte Doped with LiTFSI, COA of Formula: C9H20O5, the main research area is ionic conductivity polyfluorene diblock copolymer polymer electrolyte doped LiTFSI.

Diblock copolymer electrolytes based on a π-conjugated polyfluorene (PF) backbone were synthesized comprising nanodomains of a polymerized ionic liquid (PIL) and of a solid polymer electrolyte (SPE). The former consists of a single-ion conductor based on an imidazolium alkyl chain with a [Br]- counteranion grafted on the PF backbone. The latter consists of short ethylene oxide (EO) chains, grafted on the PF backbone and further doped with LiTFSI. The two nanophases support ionic conductivity, whereas the rigid PF backbone provides the required mech. stability. In the absence of LiTFSI, ionic conductivity in the PIL nanophase is low and exhibits an Arrhenius temperature dependence. LiTFSI substitution enhances ionic conductivity by about 3 orders of magnitude and further changes to a Vogel-Fulcher-Tammann temperature dependence. However, at ambient temperature, ionic conductivity is lower than in the corresponding PEO/LiTFSI electrolytes. X-ray studies and thermal anal. revealed that the conjugated backbone imparts liquid-crystalline order that can be fine-tuned through the EO side group length. Ionic conductivity measurements performed as a function of pressure identified local jumps of [Li]+ and [Br]- ions in the resp. SPE/PIL nanophases as responsible for the ionic conductivity Between the two ions, it is [Li]+ that has the major contribution to the ionic conductivity The current results provide designing rules for new copolymers that comprise two different ionic nanodomains (PIL and SPE) and a conjugated backbone that can further support electronic conduction.

Macromolecules (Washington, DC, United States) published new progress about Diffusion. 23783-42-8 belongs to class ethers-buliding-blocks, name is 2,5,8,11-Tetraoxatridecan-13-ol, and the molecular formula is C9H20O5, COA of Formula: C9H20O5.

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Sun, Yue’s team published research in Advanced Energy Materials in 2019 | CAS: 143-24-8

Advanced Energy Materials published new progress about Diffusion. 143-24-8 belongs to class ethers-buliding-blocks, name is 2,5,8,11,14-Pentaoxapentadecane, and the molecular formula is C10H22O5, Synthetic Route of 143-24-8.

Sun, Yue published the artcileFast and Reversible Four-Electron Storage Enabled by Ethyl Viologen for Rechargeable Magnesium Batteries, Synthetic Route of 143-24-8, the main research area is four electron rechargeable magnesium battery ethyl viologen.

Magnesium (Mg) batteries are the most promising “”post-lithium-ion”” energy storage technologies owing to their high theor. energy d., low cost, and intrinsic safety with air and moisture. However, the development of Mg batteries has been limited to cathode materials leading to low power, low reversible energy d., and poor cycle life. Here, a new Mg cathode is reported based on Et viologen (EV), which not only has a fast redox couple EV2+/EV0 but also is capable of coupling with redox-active anions, such as iodide (I-), achieving a total four-electron storage. The EV2+/EV0 redox couple demonstrates a superior rate performance (10 C) and stable cycle life (500 cycles) owing to intrinsic fast electrode kinetics. A high material utilization (>80%) can be achieved at 1.0 C under a high areal loading of 5 mg cm-2. When coupling with iodide I-, a reversible four-electron storage is achieved with a high energy d. (304.2 Wh kg-1) and a stable cycle life (>100 cycles). This study provides effective strategies for designing reversible multielectron storage for high-rate and high-energy rechargeable Mg batteries.

Advanced Energy Materials published new progress about Diffusion. 143-24-8 belongs to class ethers-buliding-blocks, name is 2,5,8,11,14-Pentaoxapentadecane, and the molecular formula is C10H22O5, Synthetic Route of 143-24-8.

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Siedle, A. R.’s team published research in Journal of Physical Chemistry C in 2022-02-17 | CAS: 143-24-8

Journal of Physical Chemistry C published new progress about Cyanation. 143-24-8 belongs to class ethers-buliding-blocks, name is 2,5,8,11,14-Pentaoxapentadecane, and the molecular formula is C10H22O5, Formula: C10H22O5.

Siedle, A. R. published the artcileCyanographite, Formula: C10H22O5, the main research area is cyanographite.

Reactions of graphite fluoride with NaCN in tetraglyme, DMF, or water lead to the formation of disordered graphitic carbon by reductive defluorination and to the oxidation of cyanide to cyanogen followed by its polymerization to paracyanogen. There is also XPS and NMR evidence for the presence of CN groups attached to the carbon in cyanographite. The product of this unselective chem. is a composite of paracyanogen and cyanographite, having a small d. of CN groups. Difficulties in the synthesis of new carbon materials from graphite fluoride are discussed.

Journal of Physical Chemistry C published new progress about Cyanation. 143-24-8 belongs to class ethers-buliding-blocks, name is 2,5,8,11,14-Pentaoxapentadecane, and the molecular formula is C10H22O5, Formula: C10H22O5.

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Hirano, Masao’s team published research in Canadian Journal of Chemistry in 1997-12-31 | CAS: 622-86-6

Canadian Journal of Chemistry published new progress about Catalysts. 622-86-6 belongs to class ethers-buliding-blocks, name is (2-Chloroethoxy)benzene, and the molecular formula is C8H9ClO, HPLC of Formula: 622-86-6.

Hirano, Masao published the artcileSelective aromatic chlorination of activated arenes with sodium chlorite, (salen)manganese(III) complex, and alumina in dichloromethane, HPLC of Formula: 622-86-6, the main research area is phenoxyl alkyl chlorination salen manganese catalyst.

The reaction of alkyl Ph ethers with sodiumchlorite indichloromethane in the presence of a (salen) manganese(III) complex and alumina preloaded with a small amount of water afforded monochlorination products with unusually high para selectivities under mild conditions. The NaClO2-based biphasic system can also be successfully used for the regioselective monochlorination of substituted anisoles and polymethyoxybenzenes.

Canadian Journal of Chemistry published new progress about Catalysts. 622-86-6 belongs to class ethers-buliding-blocks, name is (2-Chloroethoxy)benzene, and the molecular formula is C8H9ClO, HPLC of Formula: 622-86-6.

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Cao, Deqing’s team published research in Nature Communications in 2022-12-31 | CAS: 143-24-8

Nature Communications published new progress about Catalysts. 143-24-8 belongs to class ethers-buliding-blocks, name is 2,5,8,11,14-Pentaoxapentadecane, and the molecular formula is C10H22O5, SDS of cas: 143-24-8.

Cao, Deqing published the artcileOxidative decomposition mechanisms of lithium carbonate on carbon substrates in lithium battery chemistries, SDS of cas: 143-24-8, the main research area is oxidative decomposition lithium carbonate carbon battery.

Lithium carbonate plays a critical role in both lithium-carbon dioxide and lithium-air batteries as the main discharge product and a product of side reactions, resp. Understanding the decomposition of lithium carbonate during electrochem. oxidation (during battery charging) is key for improving both chemistries, but the decomposition mechanisms and the role of the carbon substrate remain under debate. Here, we use an in-situ differential electrochem. mass spectrometry-gas chromatog. coupling system to quantify the gas evolution during the electrochem. oxidation of lithium carbonate on carbon substrates. Our results show that lithium carbonate decomposes to carbon dioxide and singlet oxygen mainly via an electrochem. process instead of via a chem. process in an electrolyte of lithium bis(trifluoromethanesulfonyl)imide in tetraglyme. Singlet oxygen attacks the carbon substrate and electrolyte to form both carbon dioxide and carbon monoxide-approx. 20% of the net gas evolved originates from these side reactions. Addnl., we show that cobalt(II,III) oxide, a typical oxygen evolution catalyst, stabilizes the precursor of singlet oxygen, thus inhibiting the formation of singlet oxygen and consequent side reactions.

Nature Communications published new progress about Catalysts. 143-24-8 belongs to class ethers-buliding-blocks, name is 2,5,8,11,14-Pentaoxapentadecane, and the molecular formula is C10H22O5, SDS of cas: 143-24-8.

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Kucuk, Asuman Celik’s team published research in Journal of the Electrochemical Society in 2020-09-30 | CAS: 143-24-8

Journal of the Electrochemical Society published new progress about Batteries. 143-24-8 belongs to class ethers-buliding-blocks, name is 2,5,8,11,14-Pentaoxapentadecane, and the molecular formula is C10H22O5, HPLC of Formula: 143-24-8.

Kucuk, Asuman Celik published the artcileInfluence of LiBOB as an electrolyte additive on the performance of BiF3/C for fluoride shuttle batteries, HPLC of Formula: 143-24-8, the main research area is bismuth fluoride carbon film battery electrolyte ionic conductivity.

The potential effects of using lithium bis(oxalato)borate (LiBOB) as an electrolyte additive on the redox reactions of the pos. bismuth fluoride (BiF3) electrode were investigated in tetraglyme (G4) containing the anion acceptor (AA) triphenylboroxin (TPhBX). The electrolyte system, containing 0.06 M LiBOB, 0.5 M TPhBX, and saturated cesium fluoride (CsF) was prepared The study also included a comparison with previously studied systems based on G4, which did not contain LiBOB but AA. The tolerances to reduction and oxidation were enhanced after introducing LiBOB to the system. The capacity of BiF3 improved at C/10 rate. Defluorination of BiF3 was demonstrated to proceed through a direct desorption-insertion mechanism, whereas the contribution of the dissolution-deposition mechanism was known to be predominant in the G4-based systems. Addition of only 1 weight/weight% LiBOB to the G4 system resulted in an interesting change in the mechanism and an improvement in the capacity at high C rate. This improvement was associated with the increasing electrochem. stability of the electrolyte due to the interaction between BOB- and Cs+, reducing the possibilities of electrolyte degradation and loss of active material owing to a direct desorption-insertion mechanism.

Journal of the Electrochemical Society published new progress about Batteries. 143-24-8 belongs to class ethers-buliding-blocks, name is 2,5,8,11,14-Pentaoxapentadecane, and the molecular formula is C10H22O5, HPLC of Formula: 143-24-8.

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Kitaura, Hirokazu’s team published research in Energy & Environmental Science in 2021 | CAS: 143-24-8

Energy & Environmental Science published new progress about Batteries. 143-24-8 belongs to class ethers-buliding-blocks, name is 2,5,8,11,14-Pentaoxapentadecane, and the molecular formula is C10H22O5, Application of 2,5,8,11,14-Pentaoxapentadecane.

Kitaura, Hirokazu published the artcileAn ultrafast process for the fabrication of a Li metal-inorganic solid electrolyte interface, Application of 2,5,8,11,14-Pentaoxapentadecane, the main research area is lithium metal inorganic solid electrolyte fabrication ultrafast.

A lithium anode is expected to be applied to next-generation batteries using inorganic solid electrolytes (ISEs). When joining Li with ISEs, interfacial reactions often cause performance degradation and have been avoided. In this report, we demonstrate a new strategy for the ultrafast formation of a good interface between Li and ISEs, using a reactive process (ultrasonic-assisted fusion welding method). We found that ultrasonic irradiation helps in suitable interface formation between molten Li and ISEs, and the joining process finishes in just a few seconds. The obtained interface showed a low resistance and could be used under a high c.d. of 0.5 mA cm-2. The development of prototype cells for next-generation batteries was promoted by this ultrafast process.

Energy & Environmental Science published new progress about Batteries. 143-24-8 belongs to class ethers-buliding-blocks, name is 2,5,8,11,14-Pentaoxapentadecane, and the molecular formula is C10H22O5, Application of 2,5,8,11,14-Pentaoxapentadecane.

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Huang, Kai’s team published research in Energy Technology (Weinheim, Germany) in 2021-08-31 | CAS: 143-24-8

Energy Technology (Weinheim, Germany) published new progress about Batteries. 143-24-8 belongs to class ethers-buliding-blocks, name is 2,5,8,11,14-Pentaoxapentadecane, and the molecular formula is C10H22O5, Safety of 2,5,8,11,14-Pentaoxapentadecane.

Huang, Kai published the artcileSystematic Optimization of High-Energy-Density Li-Se Semi-Solid Flow Battery, Safety of 2,5,8,11,14-Pentaoxapentadecane, the main research area is tetraethylene glycol dimethyl ether lithium selenium energy density optimization.

Redox flow batteries (RFBs) are still unable to be applied in more fields due to their low energy d. This work proposes a high-energy-d. Li-Se semi-solid flow battery (SSFB), and improves its performance through an optimization process. The effect of composite synthesis, current collector types, and electrolyte solvent types are systematically studied. The method of impregnating Se and Ketjen black (KB) directly according to their proportion in the suspension as a composite without adding addnl. KB can not only effectively improve the stability and utilization of suspension, but also greatly reduce its viscosity. Carbon paper is used as the current collector to improve the performance of the system by its smaller contact resistance. The selected solvent of tetraethylene glycol di-Me ether (TEGDME) has smaller volatility and a larger contact angle, which contributes to the formation of a stable and uniform suspension. After optimization, the demonstrated system has achieved a volumetric capacity of 156-386 Ah L-1 with high Coulombic efficiency (≈100%) for 100 cycles. Finally, the intermittent-flow mode test has confirmed the applicability of the system. This research provides a reference for the practical application of SSFBs and a direction for the optimization of other types of suspensions.

Energy Technology (Weinheim, Germany) published new progress about Batteries. 143-24-8 belongs to class ethers-buliding-blocks, name is 2,5,8,11,14-Pentaoxapentadecane, and the molecular formula is C10H22O5, Safety of 2,5,8,11,14-Pentaoxapentadecane.

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Tripathi, Balram’s team published research in Energies (Basel, Switzerland) in 2021 | CAS: 143-24-8

Energies (Basel, Switzerland) published new progress about Batteries. 143-24-8 belongs to class ethers-buliding-blocks, name is 2,5,8,11,14-Pentaoxapentadecane, and the molecular formula is C10H22O5, Category: ethers-buliding-blocks.

Tripathi, Balram published the artcileBiFeO3 Coupled Polysulfide Trapping in C/S Composite Cathode Material for Li-S Batteries as Large Efficiency and High Rate Performance, Category: ethers-buliding-blocks, the main research area is carbon sulfur composite; bismuth iron oxide polysulfide composite cathode lithium sulfur battery.

We demonstrated the efficient coupling of BiFeO3 (BFO) ferroelec. material within the carbon-sulfur (C-S) composite cathode, where polysulfides are trapped in BFO mesh, reducing the polysulfide shuttle impact, and thus resulting in an improved cyclic performance and an increase in capacity in Li-S batteries. Here, the built-in internal field due to BFO enhances polysulfide trapping. The observation of a difference in the diffusion behavior of polysulfides in BFO-coupled composites suggests more efficient trapping in BFO-modified C-S electrodes compared to pristine C-S composite cathodes. The X-ray diffraction results of BFO-C-S composite cathodes show an orthorhombic structure, while Raman spectra substantiate efficient coupling of BFO in C-S composites, in agreement with SEM images, showing the interconnected network of submicron-size sulfur composites. Two plateaus were observed at 1.75 V and 2.1 V in the charge/discharge characteristics of BFO-C-S composite cathodes. The observed capacity of ∼1600 mAh g-1 in a 1.5-2.5 V operating window for BFO30-C10-S60 composite cathodes, and the high cyclic stability substantiate the superior performance of the designed cathode materials due to the efficient reduction in the polysulfide shuttle effect in these composite cathodes.

Energies (Basel, Switzerland) published new progress about Batteries. 143-24-8 belongs to class ethers-buliding-blocks, name is 2,5,8,11,14-Pentaoxapentadecane, and the molecular formula is C10H22O5, Category: ethers-buliding-blocks.

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Berac, Christian M.’s team published research in Macromolecular Rapid Communications in 2020 | CAS: 23783-42-8

Macromolecular Rapid Communications published new progress about Azidation. 23783-42-8 belongs to class ethers-buliding-blocks, name is 2,5,8,11-Tetraoxatridecan-13-ol, and the molecular formula is C9H20O5, Computed Properties of 23783-42-8.

Berac, Christian M. published the artcileEvaluation of charge-regulated supramolecular copolymerization to tune the time scale for oxidative disassembly of β-sheet comonomers, Computed Properties of 23783-42-8, the main research area is peptide solid phase synthesis self Click chem assembly nanorod; nanorod peptide polymer beta sheet charge TEM CD; supramol structure peptide dendrimer nanorod oxidation disassembly kinetics; kinetic control; multicomponent supramolecular polymers; reactive oxygen species responsive materials; redox regulation; supramolecular chemistry.

A multistimuli-responsive supramol. copolymerization is reported. The copolymerization is driven by hydrogen bond encoded β-sheet-based charge co-assembly into 1D nanorods in water, using glutamic acid or lysine residues in either of the peptide comonomers. The incorporation of methionine as hydrophobic amino acid supports β-sheet formation, but oxidation of the thioether side-chain to a sulfoxide functional group destabilizes the β-sheet ordered domains and induces disassembly of the supramol. polymers. Using H2O2 as reactive oxygen species, the time scale and kinetics of the oxidative disassembly are probed. Compared to the charge neutral homopolymers, it is found that the oxidative disassembly of the charged ampholytic copolymers is up to two times faster and is operative at neutral pH. The strategy is therefore an important addition to the growing field of amphiphilic polythioether containing (macro)mol. building blocks, particularly in view of tuning their oxidation induced disassembly which tends to be notoriously slow and requires high concentrations of reactive oxygen species or acidic reaction media.

Macromolecular Rapid Communications published new progress about Azidation. 23783-42-8 belongs to class ethers-buliding-blocks, name is 2,5,8,11-Tetraoxatridecan-13-ol, and the molecular formula is C9H20O5, Computed Properties of 23783-42-8.

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem