Li, Yingjun et al. published their research in Youji Huaxue in 2015 | CAS: 1877-75-4

2-(4-Methoxyphenoxy)acetic acid (cas: 1877-75-4) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides.Computed Properties of C9H10O4

Synthesis and biological activities of novel 2,5-disubstituted-1,3,4-thiadiazole derivatives was written by Li, Yingjun;Yu, Yang;Jin, Kun;Gao, Lixin;Luo, Tongchuan;Sheng, Li;Shao, Xin;Li, Jia. And the article was included in Youji Huaxue in 2015.Computed Properties of C9H10O4 This article mentions the following:

Sixteen novel 2,5-disubstituted-1,3,4-thiadiazole derivatives containing benzisoselenazolone moiety were synthesized by the reaction of 2-amino-5-substituted-1,3,4-thiadiazoles with ortho-(chloroseleno)benzoyl chloride. The structures were characterized by IR, 1H NMR spectra and elemental anal. Their biol. activities were evaluated. The exptl. results indicate that some compounds exhibit inhibitory activity against cell division cycle 25B phosphatase (Cdc25B)(IC50=1.67-6.66 娓璵ol璺疞-1). All the target compounds showed good inhibitory activity against protein tyrosine phosphatase 1B (PTP1B) (IC50=0.73-4.50 娓璵ol璺疞-1), and some compounds exhibited higher inhibitory activity than pos. control oleanolic acid (IC50=1.90 娓璵ol璺疞-1). Compound I displayed antitumor activity in vitro for human colon cancer (HCT-8) cell (IC50=12.54 娓璵ol璺疞-1). Some compounds showed the medium scavenging ability for hydroxyl radical (HO璺? and superoxide anion (O2璺?). Some compounds showed the medium scavenging ability for hydroxyl radical (HO璺? and superoxide anion (O2璺?), but no scavenging ability for DPPH 璺? In the experiment, the researchers used many compounds, for example, 2-(4-Methoxyphenoxy)acetic acid (cas: 1877-75-4Computed Properties of C9H10O4).

2-(4-Methoxyphenoxy)acetic acid (cas: 1877-75-4) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides.Computed Properties of C9H10O4

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Thiraporn, Aticha et al. published their research in Synlett in 2022 | CAS: 105-13-5

(4-Methoxyphenyl)methanol (cas: 105-13-5) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. The unique properties of ethers (i.e., that they are strongly polar, with nonbonding electron pairs but no hydroxyl group) enhance the formation and use of many reagents. For example, Grignard reagents cannot form unless an ether is present to share its lone pair of electrons with the magnesium atom. Complexation of the magnesium atom stabilizes the Grignard reagent and helps to keep it in solution.Recommanded Product: 105-13-5

Total Synthesis and Cytotoxic Activity of 7-O-Methylnigrosporolide and Pestalotioprolide D was written by Thiraporn, Aticha;Iawsipo, Panata;Tadpetch, Kwanruthai. And the article was included in Synlett in 2022.Recommanded Product: 105-13-5 This article mentions the following:

A convergent total synthesis of 7- O-methylnigrosporolide and pestalotioprolide D has been accomplished in 17 linear steps and overall yields of 1.7% and 2.6%, resp., starting from ( S)-propylene oxide and ( S)-benzyl glycidyl ether. Our synthesis exploited an acetylide addition and a Shiina macrolactonization to assemble the macrocycle, a Lindlar reduction, and Wittig and Still-Gennari olefinations to construct the three alkene groups, as well as a Jacobsen hydrolytic kinetic resolution to install the stereogenic center. The selection of the silyl protecting group of the C-4 alc. was crucial for the final deprotection step. Our synthesis also led to a hypothesis that pestalotioprolide D might be an artifact of 7- O-methylnigrosporolide. The cytotoxic activities of the two synthetic compounds against six human cancer cell lines were evaluated. Synthetic pestalotioprolide D showed more potent cytotoxic activity than 7-O-methylnigrosporolide against all the cancer cell lines tested, and the SiHa cervical cancer cell line was the most sensitive to both synthetic compounds In the experiment, the researchers used many compounds, for example, (4-Methoxyphenyl)methanol (cas: 105-13-5Recommanded Product: 105-13-5).

(4-Methoxyphenyl)methanol (cas: 105-13-5) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. The unique properties of ethers (i.e., that they are strongly polar, with nonbonding electron pairs but no hydroxyl group) enhance the formation and use of many reagents. For example, Grignard reagents cannot form unless an ether is present to share its lone pair of electrons with the magnesium atom. Complexation of the magnesium atom stabilizes the Grignard reagent and helps to keep it in solution.Recommanded Product: 105-13-5

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Cano, Rafael et al. published their research in ACS Catalysis in 2012 | CAS: 16356-02-8

1,4-Dimethoxy-2-butyne (cas: 16356-02-8) belongs to ethers. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides. At room temperature, ethers are pleasant-smelling colourless liquids. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil.Recommanded Product: 16356-02-8

Impregnated Platinum on Magnetite as an Efficient, Fast, and Recyclable Catalyst for the Hydrosilylation of Alkynes was written by Cano, Rafael;Yus, Miguel;Ramon, Diego J.. And the article was included in ACS Catalysis in 2012.Recommanded Product: 16356-02-8 This article mentions the following:

New impregnated platinum on magnetite catalyst has been prepared, characterized and used for the hydrosilylation of different alkynes. The catalyst showed a wide reaction scope, allowing its use for different functionalized alkynes, localized triple bonds, and silane reagents. The reaction is selective for the case of diynes, obtaining the desired mono- or dihydrosilylation processes. The reaction with disilane reagents lead to the incorporation of two alkyne units to the final product. The catalyst is easily prepared and handled, avoiding the use of expensive and difficult to handle organic ligands, and it could be removed from the reaction medium just by sequestering by a magnet. The catalyst could be reused up to ten times with exactly the same activity. In the experiment, the researchers used many compounds, for example, 1,4-Dimethoxy-2-butyne (cas: 16356-02-8Recommanded Product: 16356-02-8).

1,4-Dimethoxy-2-butyne (cas: 16356-02-8) belongs to ethers. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides. At room temperature, ethers are pleasant-smelling colourless liquids. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil.Recommanded Product: 16356-02-8

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Deng, Lanqing et al. published their research in Chemical Engineering Science in 2022 | CAS: 105-13-5

(4-Methoxyphenyl)methanol (cas: 105-13-5) belongs to ethers. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides. Ethers can form hydrogen bonds with other molecules (alcohols, amines, etc.) that have O閳ユ椊 or N閳ユ椊 bonds. The ability to form hydrogen bonds with other compounds makes ethers particularly good solvents for a wide variety of organic compounds and a surprisingly large number of inorganic compounds.Quality Control of (4-Methoxyphenyl)methanol

Green, versatile, and scale-up synthesis of amides by aerobic oxidative amination over Ag2O/P-C3N4 photocatalyst was written by Deng, Lanqing;Chen, Lang;Zhu, Liangdi;Li, Yang;Ou-Yang, Jie;Wu, Shaofeng;Chen, Peng;Shen, Sheng;Guo, Junkang;Zhou, Yongbo;Au, Chak-Tong;Yin, Shuang-Feng. And the article was included in Chemical Engineering Science in 2022.Quality Control of (4-Methoxyphenyl)methanol This article mentions the following:

Being extensively applied in various fields of chem. and chem. industry, the development of a green and versatile method for the synthesis of amides is in line with the demand of sustainable chem. Herein, a direct, highly selective, and scale-up (5-20 mmol) method for photocatalytic synthesis of amides through aerobic oxidative amination of alcs. with amines was developed under visible light, room temperature, using air as the oxidant. Benefiting from the adsorption of sodium hemiaminal on catalyst lengthens the C-H bond (1.148 鑴?, this novel process is feasible for a broad range of functionlized amides (69 examples), especially those for drug manufacture (e.g., moclobemide and pipobroman). Imines was almost prevented with excellent amide selectivity up to 99% could be ascribed to the low energy barrier for hemiaminal dehydrogenation while that for dehydration is high (2.13 eV). This green and efficient protocol represents an ideal alternative to the currently known methods. In the experiment, the researchers used many compounds, for example, (4-Methoxyphenyl)methanol (cas: 105-13-5Quality Control of (4-Methoxyphenyl)methanol).

(4-Methoxyphenyl)methanol (cas: 105-13-5) belongs to ethers. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides. Ethers can form hydrogen bonds with other molecules (alcohols, amines, etc.) that have O閳ユ椊 or N閳ユ椊 bonds. The ability to form hydrogen bonds with other compounds makes ethers particularly good solvents for a wide variety of organic compounds and a surprisingly large number of inorganic compounds.Quality Control of (4-Methoxyphenyl)methanol

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Shanthi, M. et al. published their research in Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy in 2007 | CAS: 1877-75-4

2-(4-Methoxyphenoxy)acetic acid (cas: 1877-75-4) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. But ether is more polar than alkenes. The unique properties of ethers (i.e., that they are strongly polar, with nonbonding electron pairs but no hydroxyl group) enhance the formation and use of many reagents. For example, Grignard reagents cannot form unless an ether is present to share its lone pair of electrons with the magnesium atom. Complexation of the magnesium atom stabilizes the Grignard reagent and helps to keep it in solution.HPLC of Formula: 1877-75-4

Substituent and solvent effects on electronic spectra of some substituted phenoxyacetic acids was written by Shanthi, M.;Kabilan, S.. And the article was included in Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy in 2007.HPLC of Formula: 1877-75-4 This article mentions the following:

The effects of substituents and solvents have been studied through the absorption spectra of nearly 19 p- and o-substituted phenoxyacetic acids in the range of 200-400 nm. The effects of substituent on the absorption spectra of compounds under present investigation are interpreted by correlation of absorption frequencies with simple and extended Hammett equations. Effect of solvent polarity and hydrogen bonding on the absorption spectra are interpreted by means of Kamlet equation and the results are discussed. In the experiment, the researchers used many compounds, for example, 2-(4-Methoxyphenoxy)acetic acid (cas: 1877-75-4HPLC of Formula: 1877-75-4).

2-(4-Methoxyphenoxy)acetic acid (cas: 1877-75-4) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. But ether is more polar than alkenes. The unique properties of ethers (i.e., that they are strongly polar, with nonbonding electron pairs but no hydroxyl group) enhance the formation and use of many reagents. For example, Grignard reagents cannot form unless an ether is present to share its lone pair of electrons with the magnesium atom. Complexation of the magnesium atom stabilizes the Grignard reagent and helps to keep it in solution.HPLC of Formula: 1877-75-4

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Kumari, Durga et al. published their research in International Journal of Coal Geology in 1990 | CAS: 6972-61-8

3-(2,4-Dimethoxyphenyl)acrylic acid (cas: 6972-61-8) belongs to ethers. The oxygen atom in ethers are more electronegative than carbon, thus the hydrogens which are alpha to the ethers are more acidic than the simple hydrocarbons. Ethers can form hydrogen bonds with other molecules (alcohols, amines, etc.) that have O閳ユ椊 or N閳ユ椊 bonds. The ability to form hydrogen bonds with other compounds makes ethers particularly good solvents for a wide variety of organic compounds and a surprisingly large number of inorganic compounds.Electric Literature of C11H12O4

Chemical analysis of filtrate and condensate from wet-carbonized peat by gas chromatography-mass spectrometry was written by Kumari, Durga. And the article was included in International Journal of Coal Geology in 1990.Electric Literature of C11H12O4 This article mentions the following:

Peat in its naturally occurring state contains 閳?0 weight% water. To use peat as a source of energy, the bulk of water must be removed by the wet-carbonization process. In this process, wet peat is heated at 500 psi and 400鎺矲 for 40 min of residence time. Wet carbonization of peat also removes a fraction of O from the peat by decarboxylation and dehydration reactions. During wet carbonization, considerable filtrate and condensate is produced, which contains phenols, aromatic acids, n-fatty acids, alkanes, ketones, aldehydes, bicyclic alkanes, etc. Many of these identified compounds were not previously reported in peat studies. In the experiment, the researchers used many compounds, for example, 3-(2,4-Dimethoxyphenyl)acrylic acid (cas: 6972-61-8Electric Literature of C11H12O4).

3-(2,4-Dimethoxyphenyl)acrylic acid (cas: 6972-61-8) belongs to ethers. The oxygen atom in ethers are more electronegative than carbon, thus the hydrogens which are alpha to the ethers are more acidic than the simple hydrocarbons. Ethers can form hydrogen bonds with other molecules (alcohols, amines, etc.) that have O閳ユ椊 or N閳ユ椊 bonds. The ability to form hydrogen bonds with other compounds makes ethers particularly good solvents for a wide variety of organic compounds and a surprisingly large number of inorganic compounds.Electric Literature of C11H12O4

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Rao, Zi-Kun et al. published their research in Journal of Materials Science in 2020 | CAS: 111-77-3

2-(2-Methoxyethoxy)ethanol (cas: 111-77-3) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. Ethyl ether is an excellent solvent for extractions and for a wide variety of chemical reactions. It is also used as a volatile starting fluid for diesel engines and gasoline engines in cold weather. Dimethyl ether is used as a spray propellant and refrigerant. Methyl t-butyl ether (MTBE) is a gasoline additive that boosts the octane number and reduces the amount of nitrogen-oxide pollutants in the exhaust. The ethers of ethylene glycol are used as solvents and plasticizers.Safety of 2-(2-Methoxyethoxy)ethanol

Dual thermo-responsive amphiphilic alternating copolymers: one-pot synthesis and the temperature-induced self-assembly was written by Rao, Zi-Kun;Ni, Hai-liang;Liu, Yu;Li, Yang;Zhu, Hong-Yu;Hao, Jian-Yuan. And the article was included in Journal of Materials Science in 2020.Safety of 2-(2-Methoxyethoxy)ethanol This article mentions the following:

Abstract: Synthesis and self-assembly of stimuli-responsive amphiphilic alternating copolymers (AAC) are an emerging land of tremendous possibilities. Herein, by combining backbone polyethylene glycol (PEG) with pendent oligo-polyglycol simultaneously, two alternating LCST segments are knitted through enzymic synthesis, giving a series of alternating poly[(PEG400-a-succinic acid)-co-(diol(3EG)-a-succinic acid)] (PPSDS) for the first time. All the PPSDSs show only one-step sharp temperature responsiveness in transmittance-temperature curve owing to stabilization effect of PEG400. The cloud points can be linearly controlled by simply adjusting the feeding ratio of PEG400/diol-3EG. Referring to published works and 1H-NMR spectra in D2O, all the obtained AAC formed penetrable nanovesicles under 4鎺矯. The TEM and 1H-NMR results confirmed that when heated to 18鎺矯, PPSDS of “9/1” transformed from nanovesicles to large-compound micelles due to large hydrophobic volume, while other PPSDS of “8/2, 7/3, 6/4” retained the vesicle structures, except that the hydrophilic layer turned from PEG400 + diol(3EG) to PEG400 alone, leading to the size reduction The temperature-controlled size “expansion and contraction” of nanovesicles was unique for AAC, which was potentially good for enhancing loading rate. Further heating above cloud point resulted in the destruction of nanostructures and irregular intermol. aggregations. The first reported dual temperature-responsive AAC was innovative in structure design, providing a potential opportunity for the design and synthesis of controllable self-assemble structures and smart biomacromols. in biomedical applications. In the experiment, the researchers used many compounds, for example, 2-(2-Methoxyethoxy)ethanol (cas: 111-77-3Safety of 2-(2-Methoxyethoxy)ethanol).

2-(2-Methoxyethoxy)ethanol (cas: 111-77-3) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. Ethyl ether is an excellent solvent for extractions and for a wide variety of chemical reactions. It is also used as a volatile starting fluid for diesel engines and gasoline engines in cold weather. Dimethyl ether is used as a spray propellant and refrigerant. Methyl t-butyl ether (MTBE) is a gasoline additive that boosts the octane number and reduces the amount of nitrogen-oxide pollutants in the exhaust. The ethers of ethylene glycol are used as solvents and plasticizers.Safety of 2-(2-Methoxyethoxy)ethanol

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Cravotto, Giancarlo et al. published their research in Journal of Organic Chemistry in 2001 | CAS: 5367-32-8

3-Methyl-4-nitroanisole (cas: 5367-32-8) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil. The unique properties of ethers (i.e., that they are strongly polar, with nonbonding electron pairs but no hydroxyl group) enhance the formation and use of many reagents. For example, Grignard reagents cannot form unless an ether is present to share its lone pair of electrons with the magnesium atom. Complexation of the magnesium atom stabilizes the Grignard reagent and helps to keep it in solution.Recommanded Product: 3-Methyl-4-nitroanisole

Azomethine Ylide Cycloaddition/Reductive Heterocyclization Approach to Oxindole Alkaloids: Asymmetric Synthesis of (-)-Horsfiline was written by Cravotto, Giancarlo;Giovenzana, Giovanni Battista;Pilati, Tullio;Sisti, Massimo;Palmisano, Giovanni. And the article was included in Journal of Organic Chemistry in 2001.Recommanded Product: 3-Methyl-4-nitroanisole This article mentions the following:

The intermol. [3+2] annulation of azomethine ylides with 2(2-nitrophenyl)acrylate dienophiles followed by reductive heterocyclization affords the spiro(indole-pyrrolidine) ring system. Hence, this enable us to accomplish a concise and highly enantioselective synthesis of (-)-horsfiline, based on chiral auxiliary-directed 锜?face discrimination in the 1,3-dipolar cycloaddition of (1S,2R)-2-phenyl-1-cyclohexyl ester I with N-methylazomethine ylide. In the experiment, the researchers used many compounds, for example, 3-Methyl-4-nitroanisole (cas: 5367-32-8Recommanded Product: 3-Methyl-4-nitroanisole).

3-Methyl-4-nitroanisole (cas: 5367-32-8) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil. The unique properties of ethers (i.e., that they are strongly polar, with nonbonding electron pairs but no hydroxyl group) enhance the formation and use of many reagents. For example, Grignard reagents cannot form unless an ether is present to share its lone pair of electrons with the magnesium atom. Complexation of the magnesium atom stabilizes the Grignard reagent and helps to keep it in solution.Recommanded Product: 3-Methyl-4-nitroanisole

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Bohman, B. et al. published their research in Journal of Chemical Ecology in 2008 | CAS: 6972-61-8

3-(2,4-Dimethoxyphenyl)acrylic acid (cas: 6972-61-8) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. But ether is more polar than alkenes. Ethyl ether is an excellent solvent for extractions and for a wide variety of chemical reactions. It is also used as a volatile starting fluid for diesel engines and gasoline engines in cold weather. Dimethyl ether is used as a spray propellant and refrigerant. Methyl t-butyl ether (MTBE) is a gasoline additive that boosts the octane number and reduces the amount of nitrogen-oxide pollutants in the exhaust. The ethers of ethylene glycol are used as solvents and plasticizers.Electric Literature of C11H12O4

Structure-Activity Relationships of Phenylpropanoids as Antifeedants for the Pine Weevil Hylobius abietis was written by Bohman, B.;Nordlander, G.;Nordenhem, H.;Sunnerheim, K.;Borg-Karlson, A.-K.;Unelius, C. R.. And the article was included in Journal of Chemical Ecology in 2008.Electric Literature of C11H12O4 This article mentions the following:

Et cinnamate has been isolated from the bark of Pinus contorta in the search for antifeedants for the pine weevil, Hylobius abietis. Based on this lead compound, a number of structurally related compounds were synthesized and tested. The usability of the Topliss scheme, a flow diagram previously used in numerous structure-activity relationship (SAR) studies, was evaluated in an attempt to find the most potent antifeedants. The scheme was initially followed stepwise; subsequently, all compounds found in the scheme were compared. In total, 51 phenylpropanoids were tested and analyzed for SARs by using arguments from the field of medicinal chem. (rational drug design). Individual Hansch parameters based on hydrophobicity, steric, and electronic properties were examined The effects of position and numbers of substituents on the aromatic ring, the effects of conjugation in the mols., and the effects of the properties of the parent alc. part of the esters were also evaluated. It proved difficult to find strong SARs derived from single physicochem. descriptors, but our study led to numerous new, potent, phenylpropanoid antifeedants for the pine weevil. Among the most potent were Me 3-phenylpropanoates monosubstituted with chloro, fluoro, or Me groups and the 3,4-dichlorinated Me 3-phenylpropanoate. In the experiment, the researchers used many compounds, for example, 3-(2,4-Dimethoxyphenyl)acrylic acid (cas: 6972-61-8Electric Literature of C11H12O4).

3-(2,4-Dimethoxyphenyl)acrylic acid (cas: 6972-61-8) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. But ether is more polar than alkenes. Ethyl ether is an excellent solvent for extractions and for a wide variety of chemical reactions. It is also used as a volatile starting fluid for diesel engines and gasoline engines in cold weather. Dimethyl ether is used as a spray propellant and refrigerant. Methyl t-butyl ether (MTBE) is a gasoline additive that boosts the octane number and reduces the amount of nitrogen-oxide pollutants in the exhaust. The ethers of ethylene glycol are used as solvents and plasticizers.Electric Literature of C11H12O4

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Khan, Khalid Mohammed et al. published their research in Letters in Organic Chemistry in 2011 | CAS: 57179-35-8

3-Hydroxy-5-methoxybenzaldehyde (cas: 57179-35-8) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. Ethers feature bent C閳ユ彊閳ユ弲 linkages. In dimethyl ether, the bond angle is 111鎺?and C閳ユ彊 distances are 141 pm. The barrier to rotation about the C閳ユ彊 bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.Electric Literature of C8H8O3

NH4Cl-mediated new protocol for the synthesis of 5-arylidene barbiturates was written by Khan, Khalid Mohammed;Ali, Muhammad;Khan, Momin;Taha, Muhammad;Perveen, Shahnaz. And the article was included in Letters in Organic Chemistry in 2011.Electric Literature of C8H8O3 This article mentions the following:

Eco-benign method for synthesizing arylidene barbiturates was developed by using NH4Cl in stoichiometric amount, as an enolization activator, in water. Execution of methodol. is simple, products obtained in high yields and the reactions are completed within 30 min. The new methodol. does not involve any solvent/solvent extraction while solid products were yielded in all cases which were filtered and washed. In the experiment, the researchers used many compounds, for example, 3-Hydroxy-5-methoxybenzaldehyde (cas: 57179-35-8Electric Literature of C8H8O3).

3-Hydroxy-5-methoxybenzaldehyde (cas: 57179-35-8) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. Ethers feature bent C閳ユ彊閳ユ弲 linkages. In dimethyl ether, the bond angle is 111鎺?and C閳ユ彊 distances are 141 pm. The barrier to rotation about the C閳ユ彊 bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.Electric Literature of C8H8O3

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem