New learning discoveries about 702-24-9

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route 702-24-9, its application will become more common.

Some common heterocyclic compound, 702-24-9, name is 4-Methoxy-N-methylbenzylamine, molecular formula is C9H13NO, traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route. COA of Formula: C9H13NO

Respectively, weighed o-iodobenzoic acid 252 mg,N-methyl-4-methoxybenzylamine 68 mg was added to 10 ml of chloroform,The reaction was stirred under reflux for 6 hours.Natural cooling to room temperature after pumping to remove IBX And its reduction products o-iodo benzoic acid(IBA),The filtrate was washed with 10percent Na0H solution,1M hydrochloric acid, water and saturated sodium chloride solution were washed 3 times,Each about 10 ml,The solvent chloroform was removed by rotary evaporation,The product was directly characterized by NMR, and the yield of 4-methoxybenzaldehyde was 91percent.

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route 702-24-9, its application will become more common.

Reference:
Patent; Guizhou University; CONG, Hang; WANG, Fang; TAO, Zhu; (8 pag.)CN105732351; (2016); A;,
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

A new synthetic route of 41864-45-3

The synthetic route of 41864-45-3 has been constantly updated, and we look forward to future research findings.

In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. 41864-45-3, name is 4,5-Dimethoxy-2-methylaniline belongs to ethers-buliding-blocks compound, it is a common compound, a new synthetic route is introduced below. Recommanded Product: 41864-45-3

The compound 68 (150 mg, 0.415 mmol) was dissolved in acetic acid (0.75 mL). 4,5-dimethoxy-2-methylaniline (84 mg, 0.501 mmol) was added to the solution. The mixture was stirred at 100C for 3 hours. Water was added to the reaction mixture. The mixture was extracted with ethyl acetate. The organic layer was washed by brine, and dried over sodium sulfate. The solvent was evaporated under reduced pressure. The obtained residue was purified by silica-gel column chromatography (ethyl acetate-n-hexane) to give the compound 1-1252 (112 mg, yield 56%). 1H-NMR (DMSO-D6) delta: 1.24 (t, J = 7.2 Hz, 3H), 1.98 (s, 3H), 3.69 (s, 3H), 3.74 (s, 3H), 4.26 (q, J = 6.8, 14.0 Hz, 2H), 5.37 (s, 2H), 6.76 (s, 1H), 6.83 (s, 1H), 7.36 (dd, J = 6.8 Hz, 2H), 9.05 (s, 1H).

The synthetic route of 41864-45-3 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; Shionogi & Co., Ltd; TANAKA, Satoru; OGAWA, Tomoyuki; KAI, Hiroyuki; OGATA, Yuki; HIRAI, Keiichiro; KUROSE, Noriyuki; FUJII, Yasuhiko; (438 pag.)EP3287443; (2018); A1;,
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

A new synthetic route of 450-88-4

According to the analysis of related databases, 450-88-4, the application of this compound in the production field has become more and more popular.

In the chemical reaction process, reaction time, type of solvent, can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product. An updated downstream synthesis route of 450-88-4 as follows. Quality Control of 1-Bromo-4-fluoro-2-methoxybenzene

General procedure: Example 3Tandem Borylation/Dehalogenation of 1-Chloro-4-fluoro-3-Substituted- and 1-Bromo-4-fluoro-3-Substituted BenzenesTandem borylation/dehalogenation was also investigated as a strategy for the ortho-borylation of arenes that are substituted with an electron-withdrawing group. The scheme below illustrates the tandem borylation/dehalogenation methodology which was investigated. As discussed above, in the case of arenes that are substituted with an electron-withdrawing group, iridium-catalyzed C-H activation-borylation of the arene is typically governed by steric effects. In tandem borylation/dehalogenation, the substrate can include an electron-withdrawing group and a sacrificial atom (e.g., a halogen such as Cl or Br) positioned para to the electron-withdrawing group, so as to sterically hinder attack of the iridium catalyst at the otherwise sterically favored position meta to the electron-withdrawing group. As a result, iridium-catalyzed C-H activation-borylation of the arene exclusively generates the ortho-borylated (electronic) product. Subsequent dehalogenation can afford exclusively the desired electronic product.[0337] General Procedure for Borylation [0338] In a nitrogen atmosphere glovebox B2Pin2 (140 mg, 0.55 mmol) was weighed into a 20 mL vial containing a magnetic stir bar. [Ir(OMe)cod]2 (6.6 mg, 0.02 mmol) and 4,4?-di-tert-butyl-2,2?-dipyridyl ligand (5.4 mg, 0.02 mmol) were weighed into two separate test tubes, each being diluted with THF (2 mL). The [Ir(OMe)cod]2 solution was transferred into the 20 mL vial containing B2Pin2. This mixture was stirred until a golden yellow clear solution was obtained. The solution containing ligand was transferred into the vial, and the mixture was stirred until it became a dark brown color solution. The substrate (1 mmol) was added to the vial, which was then sealed. The reaction mixture stirred for 24 h at rt, after which the vial was removed from the glovebox. The reaction mixture was passed through a short plug of silica eluting with a 10:1 hexane/EtOAc solution (2¡Á10 mL). The volatiles were removed by rotary evaporation affording the product, which was characterized using standard methodologies. 1-Bromo-4-fluoro-2-methoxybenzene was borylated using the general procedure described above. After workup, a white solid was obtained (0.313 g, 95%): mp 104-105 C.; 1H NMR (500 MHz, CDCl3) delta 7.89 (d, J=6.5 Hz, 1H), 6.61 (d, J=11.0 Hz, 1H), 3.72 (s, 3H), 1.35 (s, 12H); 13C NMR (125 MHz, CDCl3) delta 167.6 (d, J=251.2 Hz), 159.5 (d, J=11.4 Hz), 140.2 (d, J=10.4 Hz), 108.3 (d, J=22.7 Hz), 105.9 (d, J=2.9 Hz), 83.9, 56.4, 24.8; 19F NMR (470 MHz, CDCl3) delta 100.4; 1113 NMR (160 MHz, CDCl3) delta 29.5 (br s).

According to the analysis of related databases, 450-88-4, the application of this compound in the production field has become more and more popular.

Reference:
Patent; Smith, III, Milton R.; Maleczka, JR., Robert E.; Li, Hao; Jayasundara, Chathurika; Oppenheimer, Jossian; Sabasovs, Dmitrijs; US2015/65743; (2015); A1;,
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Introduction of a new synthetic route about 33311-29-4

The synthetic route of 33311-29-4 has been constantly updated, and we look forward to future research findings.

Researchers who often do experiments know that organic synthesis is a process of preparing more complex target molecules from simple raw materials through one or more chemical reactions. Generally, it requires fewer steps, and cheap raw materials. 33311-29-4, name is 4-(2-Methoxyethoxy)aniline, A new synthetic method of this compound is introduced below., Computed Properties of C9H13NO2

In a 100 mL 3-neck RBF, N-(2-(benzyloxy)-5-nitrophenyl)-2-chloro-5-fluoropyrimidin-4-amine (0.205 g), 4-(2-methoxyethoxy)aniline (0.137 g), Cs2CO3 (0.266 g) and Xantphos (0.032 g) were taken in degassed 1,4-dioxane (8.0 mL) and reaction mixture was degassed under argon for 30 minutes. Palladium acetate (0.013 g) was added to reaction mixture and again it was degassed for 30 minutes. The reaction mixture was heated to 80 C. and stirred for 3.5 h. The reaction was monitored on TLC using hexane:ethyl acetate: (5:5) as mobile phase. After completion, the reaction mixture was allowed to cool at room temperature. The reaction mixture was poured into water and product was extracted with ethyl acetate (3*25 mL). The ethyl acetate layer washed with brine solution, dried over sodium sulfate and concentrated under reduced pressure. Crude material was purified by triturating with diethyl ether to give 0.1 g of N4-(2-(benzyloxy)-5-nitrophenyl)-5-fluoro-N2-(4-(2-methoxyethoxyl)phenyl)pyrimidine-2,4-diamine. 1H NMR: CDCl3 (400 MHz): 3.47 (d, 3H, J=11.6), 3.77 (dd, 2H, J=4.8, 8.8), 4.15 (t, 2H, J=4.8), 5.28 (s, 2H), 6.96 (d, 1H, J=8.8), 7.03 (d, 1H, J=8.8), 7.08 (d, 1H, J=9.2), 7.45 (m, 7H), 7.83 (s, 1H), 7.9 (d, 2H, J=2.8), 8.02 (dd, 1H, J=2.1, 6.8), 9.18 (s, 1H).

The synthetic route of 33311-29-4 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; Celgene Avilomics Research, Inc.; Tester, Richland; Chaturvedi, Prasoon; Zhu, Zhendong; Surapaneni, Sekhar S.; Beebe, Lisa; US2015/174128; (2015); A1;,
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

The important role of 22483-09-6

According to the analysis of related databases, 22483-09-6, the application of this compound in the production field has become more and more popular.

In the chemical reaction process, reaction time, type of solvent, can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product. An updated downstream synthesis route of 22483-09-6 as follows. SDS of cas: 22483-09-6

50 g (270.2 mmol) 4-bromobenzaldehyde were dissolved in 200 ml of toluene and 28.4 g (270.2 mmol) aminoacetaldehyde dimethylacetal were added.. After the addition of 5.1 g (27.0 mmol) p-toluenesulfonic acid monohydrate, the reaction mixture was heated under reflux in a Dean Stark apparatus. After 4 h, the reaction was cooled to room temperature and washed with saturated sodium hydrogen carbonate-solution (2x) and water. The combined aqueous layers were extracted with Toluene and the combined organic layers were dried over magnesium sulfate and evaporated. The residue was dissolved in 200 ml of ethanol and 5.11 g (135.1 mmol) of sodium borohydride were added in small portions. After stirring for 2 h at room temperature and standing overnight, 5.0 ml acetic acid were added and the solvent was removed i. vac. The residue was taken up in dichloromethane and washed (2x) with water. After drying over magnesium sulfate and evaporation, 60.5 g of the title compound were obtained (crude product), which were used without further purification. Rt = 0.80 min (Method C). Detected mass: 274.1/276.1 (M+H+).

According to the analysis of related databases, 22483-09-6, the application of this compound in the production field has become more and more popular.

Reference:
Patent; SANOFI-AVENTIS; WO2008/77552; (2008); A1;,
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Introduction of a new synthetic route about 93919-56-3

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 93919-56-3.

Each compound has different characteristics, and only by selecting the characteristics of the compound suitable for a specific situation can the compound be applied on a large scale. 93919-56-3, name is (4-(Trifluoromethoxy)phenyl)methanamine, This compound has unique chemical properties. The synthetic route is as follows., Computed Properties of C8H8F3NO

General procedure: All purchased chemicals were used without further purification. All solvents were HPLC grade. Boc-Trp-OH (1.00 mmol) was dissolved in 10 mL of dioxane under nitrogen. Carbonyldiimidazole(1.02 mmol) was then added in a stepwise manner and the resulting mixture stirred for 3 h at room temperature and then heated to 50C for 30 min. The desired amine (1.03 mmol) was added to the reaction mixture at room temperature and stirring was continued for 48 h. The solvent was removed under reduced pressure and crude product was extracted with ethyl acetate (3 x 20 ml). The organic extracts were washed with 1M hydrochloric acid (15 mL), saturated sodium bicarbonate solution (15 mL) and water (15 mL), then dried over anhydrous MgSO4 and the solvent was removed under reduced pressure. To this crude compound in water (1 mL) was added anisole (2.00 mmol). The solution was then cooled to 0C prior to addition of trifluoroacetic acid (30.00 mmol) in 1 mL of water. After stirring for 1 h at 0C, the reaction mixture was allowed to warm to room temperature and stirring was continued for 12 h. The reaction mixture was then diluted with ethyl acetate (15 mL) and washed with saturated sodium bicarbonate solution (15 mL), water (15 mL) and brine solution (15 mL) and dried over anhydrous MgSO4. The solvent was removed under reduced pressure to afford the crude free amine which was directly used in the next step without further purification. To a solution of the above crude amine in dichloromethane (5 mL) was added carbonyldiimidazole (1.2 mmol) under nitrogen at room temperature. After 3 h stirring, morpholine or 1-Boc-piperazine (1.55 mmol) was added to the reaction mixture and stirred for another 12 h at room temperature. The solvent was removed under reduced pressure, diluted with ethyl acetate (15 mL) and washed with 1M hydrochloric acid (15 mL), saturated sodium bicarbonate solution (15 mL), brine solution (15 mL) and dried over anhydrous MgSO4. The crude product was then purified by preparative HPLC (Gradient 0 to 100% of 95/5 acetonitrile/water solution over 25 min) and freeze-dried. NMR spectral data of all synthesized compounds 1-10 are included in the supporting information (S1-S10 Figs). NMR spectra were recorded on Bruker Avance DRX-600 and Varian 400 MHz spectrometers at 298 K with TMS as internal standard. High-resolution mass spectrometry (HRMS) was performed on a Bruker micro-TOF by directin fusion in acetonitrile/H2O 70:30 at 3 muL/min using sodium formate clusters as an internal calibrant. Semi-preparative RP-HPLC purification of the compounds was performed using a Waters Delta 600 chromatography system fitted with a Waters 486 tuneable absorbance detector with detection at 214 nm. Purification was performed by eluting with solvents A (0.1% TFA in water) and B (9:1 CH3CN:H2O, 0.1% TFA) on a Vydac C18 250 x 22 mm (300 A) steel jacketed column at 20 mL/min. NH peak of Indole is not observed in some of the compounds in CDCl3 due to peak broadness.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 93919-56-3.

Reference:
Article; Duprez, Wilko; Bachu, Prabhakar; Stoermer, Martin J.; Tay, Stephanie; McMahon, Roisin M.; Fairlie, David P.; Martin, Jennifer L.; PLoS ONE; vol. 10; 7; (2015);,
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Simple exploration of 589-10-6

The synthetic route of 589-10-6 has been constantly updated, and we look forward to future research findings.

589-10-6, name is (2-Bromoethoxy)benzene, belongs to ethers-buliding-blocks compound, is considered to be a conventional heterocyclic compound, which is widely used in drug synthesis. The chemical synthesis route is as follows. HPLC of Formula: C8H9BrO

Upon stirring a solution of p-anisoyl chloride (8.53 g, 50 mmol) and beta-bromophenetole (10.05 g, 50 mmol) in 20 mL of anhydrous nitrobenzene at 5 C. under a nitrogen atmosphere, 7.33 g (55 mmol) of anhydrous aluminum chloride was added portionwise. The resulting mixture was stirred at room temperature for 1 hour then at a reduced pressure for 5 minutes to remove the HCl gas produced during the reaction. Stirring was continued at room temperature under the nitrogen atmosphere for another hour. Nitrobenzene was removed at 45 C./0.4 mmHg and the solids deposited were dissolved in 60 mL of chloroform. Upon stirring the solution in an ice bath, 25 mL of 2M HCl was added portionwise. The organic layer was separated and washed with 20 mL of saturated sodium hydrogencarbonate aqueous solution, dried over solid NaHCO3, and filtered through a filter paper. Solvent was removed from the filtrate using a rotary evaporator and the crude product was purified by silica gel column chromatography (particle size 32-63) in CHCl3. The product with Rf=0.26 was collected and recrystallized from chloroform/hexane to give 14.44 g (43 mmol, 86% yield) of white flakes. m.p. 112.2-113.3 C. E.A. C16H15BrO3, calculated C 57.32, H 4.52, Br 23.83; found C 57.40, H 4.55, Br 23.76. 1H-NMR (DMSO-d6) delta 3.86 (m, 5H, -OCH3, -OCH2CH2Br), 4.44 (t, 2H, J=5.40, 5.04 Hz, -OCH2CH2Br), 7.08 (d, 2H, J=8.64 Hz, aromatic H’s), 7.11 (d, 2H, J=8.64 Hz, aromatic H’s), 7.71 (d, 2H, J=2.52 Hz, aromatic H’s), 7.73 (d, 2H, J=2.52 Hz, aromatic H’s). 13C-NMR (DMSO-d6) 31.17, 55.51, 67.97, 113.75, 114.33, 129.88, 130.44, 131.84, 161.11, 162.54, 193.12.

The synthetic route of 589-10-6 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; Mills, Randell L.; Wu, Guo-Zhang; US2005/80260; (2005); A1;,
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

The important role of 5473-01-8

The synthetic route of 5473-01-8 has been constantly updated, and we look forward to future research findings.

Related Products of 5473-01-8,Some common heterocyclic compound, 5473-01-8, name is 2-Bromo-6-methoxyaniline, molecular formula is C7H8BrNO, traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route.

To a solution of 2-bromo-6-methoxyaniline (1.539 g, 7.62 mmol) in tetrahydrofuran (12 mL) was added 1,1′-bis(diphenylphosphino)ferrocene-palladium(II)dichloride dichloromethane complex (0.297 g, 0.364 mmol). Nitrogen was bubbled through the solution for about 3 minutes, then a 0.35 M in tetrahydrofuran solution of cyclobutylzinc(II) bromide (40 mL, 14.00 mmol) was added dropwise over 5 minutes. The reaction was stirred for 15 hours at ambient temperature. Additional cyclobutylzincbromide solution (24 mL) was added and the mixture was stirred at ambient temperature for 24 hours. The reaction was quenched with saturated aqueous ammonium chloride (50 mL), diluted with methyl tert-butyl ether (400 mL), and the layers were separated. The organic layer was concentrated in vacuo to give crude material that was purified via flash chromatography, eluting on a 40 g silica gel cartridge with 1-60percent methyl tert-butyl ether/hexanes over 40 minutes to provide the title compound. 1H NMR (501 MHz, chloroform-d) delta ppm 6.81 (ddd, J=7.5, 1.7, 0.8 Hz, 1H), 6.77 (t, J=7.7 Hz, 1H), 6.74 (dd, J=7.9, 1.8 Hz, 1H), 3.88 (s, 3H), 3.75 (d, J=17.6 Hz, 2H), 3.59-3.49 (m, 1H), 2.47-2.37 (m, 2H), 2.27-2.16 (m, 2H), 2.09 (tdt, J=10.5, 9.3, 7.9 Hz, 1H), 1.95-1.86 (m, 1H)+ MS (ESI+) m/z 178 (M+H)+.

The synthetic route of 5473-01-8 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; AbbVie S.a.r.l.; Galapagos NV; Altenbach, Robert J.; Bogdan, Andrew; Couty, Sylvain; Desroy, Nicolas; Gfesser, Gregory A.; Housseman, Christopher Gaetan; Kym, Philip R.; Liu, Bo; Mai, Thi Thu Trang; Malagu, Karine Fabienne; Merayo Merayo, Nuria; Picolet, Olivier Laurent; Pizzonero, Mathieu Rafael; Searle, Xenia B.; Van der Plas, Steven Emiel; Wang, Xueqing; Yeung, Ming C.; (189 pag.)US2019/77784; (2019); A1;,
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Simple exploration of 4698-11-7

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. We look forward to the emergence of more reaction modes in the future.

Researchers who often do experiments know that organic synthesis is a process of preparing more complex target molecules from simple raw materials through one or more chemical reactions. Generally, it requires fewer steps, and cheap raw materials. 4698-11-7, name is 10-Methoxy-5H-dibenzo[b,f]azepine, A new synthetic method of this compound is introduced below., SDS of cas: 4698-11-7

Example 1 Step 1. Preparation of 10-Methoxy-5H-dibenz [b, f] azepine-5-carbonyl chloride 100 gms of 10 Methoxy iminostilbene is dissolved in 300 mi chloroform & cooled to 0 C Bis (trichlor methyl) carbonate (BTC) 65 gms is added. 67 gms of triethyl amine (TEA) in 100 ml chloroform is added slowly over a period of6 hour & maintaining the temperature 0-5C. Temperature is then increased to 25-30 C 1& maintained for 8 hour. The reaction mixture is poured into 300 mi water & layers are separated. Chloroform is evaporated 10-Methoxy-5H-dibenz [b, f] azepine-5-carbonyl chloride is isolated in methanol. Yield obtained is 110 gms (86%) of theoretical.Example 3 Step 1. Preparation of 10-Methoxy-5H-dibenz [b, f] azepine-5-carbonyl chloride 100 gms of 10-Methoxy iminostilbene is dissolved in 300 ml chloroform & cooled to 0C and 45 gms Bis (trichlor methyl) carbonate (BTC) is added followed by he addition of 45 gms-of-TEA in 100 ml chloroform over a period-of 8 hours maintaining the temperature at 0-5C. The temperature is then increased to 25-30C & maintained for 2 hours. The reaction mixture is poured into 300 ml water layers are separated. Chloroform is evaporated & product is isolated in methanol. Yield obtained is 100 gms (80% of theoretical).

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. We look forward to the emergence of more reaction modes in the future.

Reference:
Patent; AMOLI ORGANICS LTD.; WO2005/66133; (2005); A2;,
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Continuously updated synthesis method about 54314-84-0

According to the analysis of related databases, 54314-84-0, the application of this compound in the production field has become more and more popular.

Each compound has different characteristics, and only by selecting the characteristics of the compound suitable for a specific situation can the compound be applied on a large scale. 54314-84-0, name is ((3-Bromopropoxy)methyl)benzene, This compound has unique chemical properties. The synthetic route is as follows., name: ((3-Bromopropoxy)methyl)benzene

[(3-Benzyloxy-propyl)-ethoxy-phosphinoylmethyl]-phosphonic acid diethyl ester To an oven-dried flask was added 10.25 g (44.7 mmol) of (3-Bromo-propoxymethyl)-benzene and 7.67 mL (44.7 mmol) of triethyl phosphite. The flask was fitted with a short-path distillation head, for removal of bromoethane, and the mixture heated at 150¡ã C. for 4 h. The reaction was cooled to ambient temperature, and then diluted with 120 mL of absolute ethanol and 1.8 N KOH (120 mL, 216 mol). The distillation head was replaced with a reflux condenser and the solution heated at reflux for 5 h. The reaction was cooled then concentrated in vacuo. The basic aqueous layer was extracted with EtOAc (2x) and then acidified to pH 3 with conc. HCl. The aqueous layer was extracted with EtOAc (3x) and the combined extracts were dried over MgSO4 and concentrated. The resulting crude product (8.24 g) was used as is in the next reaction. 31P NMR (300 MHz, DMSO-d6) delta34.113.

According to the analysis of related databases, 54314-84-0, the application of this compound in the production field has become more and more popular.

Reference:
Patent; Shakespeare, William C.; Sawyer, Tomi K.; Metcalf III, Chester A.; Wang, Yihan; Bohacek, Regine; US2003/130234; (2003); A1;,
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem