Toupalas, Georgios et al. published their research in ACS Catalysis in 2022 | CAS: 105-13-5

(4-Methoxyphenyl)methanol (cas: 105-13-5) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. Ethers feature bent C–O–C linkages. In dimethyl ether, the bond angle is 111° and C–O distances are 141 pm. The barrier to rotation about the C–O bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.Recommanded Product: (4-Methoxyphenyl)methanol

Pd-Catalyzed Direct Deoxygenative Arylation of Non-π-Extended Benzyl Alcohols with Boronic Acids via Transient Formation of Non-Innocent Isoureas was written by Toupalas, Georgios;Thomann, Gianin;Schlemper, Lukas;Rivero-Crespo, Miguel A.;Schmitt, Hendrik L.;Morandi, Bill. And the article was included in ACS Catalysis in 2022.Recommanded Product: (4-Methoxyphenyl)methanol This article mentions the following:

Authors report the direct arylation of non-derivatized alcs. with boronic acids and demonstrate that a Pd catalyst, in combination with a carbodiimide, can be used to forge a C-C bond via the transient formation of non-innocent isoureas from the corresponding alcs. Besides further polarizing the C-O bond, the transiently generated isourea contains a masked base that is released during the reaction to enable catalytic turnover under exogenous base-free conditions. The developed concept was benchmarked against the coupling of non-π-extended benzyl alcs. and boronic acids and led to the formation of a C-C bond between differently decorated coupling partners. Notably, the strategic generation of non-innocent isoureas endows this C-O cleavage reaction with high orthogonality over conventional electrophiles and enables the employment of highly base-sensitive boronic acids. Addnl., the preformed isoureas can be leveraged for rapid (5 min reaction time) exogenous base-free coupling reactions, which work under conventional thermal conditions and do not rely on customized catalysts or specialized equipment. The synthetic investigations were also complemented by preliminary mechanistic studies. More broadly, the presented work bridges a conceptual gap between two important research areas, i.e., carbodiimide-mediated alc. activation and deoxygenative transition metal-catalyzed coupling chem., providing a promising blueprint for direct catalytic deoxygenative reactions. In the experiment, the researchers used many compounds, for example, (4-Methoxyphenyl)methanol (cas: 105-13-5Recommanded Product: (4-Methoxyphenyl)methanol).

(4-Methoxyphenyl)methanol (cas: 105-13-5) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. Ethers feature bent C–O–C linkages. In dimethyl ether, the bond angle is 111° and C–O distances are 141 pm. The barrier to rotation about the C–O bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.Recommanded Product: (4-Methoxyphenyl)methanol

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Willemsens, Bert et al. published their research in ACS Symposium Series in 2004 | CAS: 56619-93-3

N-(3-Methoxyphenyl)pivalamide (cas: 56619-93-3) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. But on the other hand, ethers undergo cleavage by reaction with acids. Ethyl ether is an excellent solvent for extractions and for a wide variety of chemical reactions. It is also used as a volatile starting fluid for diesel engines and gasoline engines in cold weather. Dimethyl ether is used as a spray propellant and refrigerant. Methyl t-butyl ether (MTBE) is a gasoline additive that boosts the octane number and reduces the amount of nitrogen-oxide pollutants in the exhaust. The ethers of ethylene glycol are used as solvents and plasticizers.Safety of N-(3-Methoxyphenyl)pivalamide

Dihydro-7-benzofurancarboxylic acid: An intermediate in the synthesis of the enterokinetic agent R108512 was written by Willemsens, Bert;Copmans, Alex;Beerens, Dirk;Leurs, Stef;de Smaele, Dirk;Rey, Max;Farkas, Silke. And the article was included in ACS Symposium Series in 2004.Safety of N-(3-Methoxyphenyl)pivalamide This article mentions the following:

A facile and scalable method for the synthesis of 4-amino-5-chloro-2,3-dihydro-7-benzofurancarboxylic acid, an intermediate in the synthesis of the enterokinetic agent R108512, was developed. The key step in the synthesis is a Zn mediated ring closure of Me 4-(acetylamino)-3-bromo-2-(2-bromoethoxy)-5-chlorobenzoate. The ring closure can be achieved without preliminary activation of the Zn on condition that the O content in the reaction mixture is <0.5%. The new process eliminates hazardous chems. (ethylene oxide) and low temperature reactions (-70°, BuLi). In the experiment, the researchers used many compounds, for example, N-(3-Methoxyphenyl)pivalamide (cas: 56619-93-3Safety of N-(3-Methoxyphenyl)pivalamide).

N-(3-Methoxyphenyl)pivalamide (cas: 56619-93-3) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. But on the other hand, ethers undergo cleavage by reaction with acids. Ethyl ether is an excellent solvent for extractions and for a wide variety of chemical reactions. It is also used as a volatile starting fluid for diesel engines and gasoline engines in cold weather. Dimethyl ether is used as a spray propellant and refrigerant. Methyl t-butyl ether (MTBE) is a gasoline additive that boosts the octane number and reduces the amount of nitrogen-oxide pollutants in the exhaust. The ethers of ethylene glycol are used as solvents and plasticizers.Safety of N-(3-Methoxyphenyl)pivalamide

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Pramila, T. et al. published their research in Journal of Pharmaceutical Sciences and Research in 2020 | CAS: 1877-75-4

2-(4-Methoxyphenoxy)acetic acid (cas: 1877-75-4) belongs to ethers. The oxygen atom in ethers are more electronegative than carbon, thus the hydrogens which are alpha to the ethers are more acidic than the simple hydrocarbons. Electron-deficient reagents are also stabilized by ethers. For example, borane (BH3) is a useful reagent for making alcohols. Pure borane exists as its dimer, diborane (B2H6), a toxic gas that is inconvenient and hazardous to use. Borane forms stable complexes with ethers, however, and it is often supplied and used as its liquid complex with tetrahydrofuran (THF).Related Products of 1877-75-4

Synthesis and characterization of aryloxy derivatives of bis-azetinone for anticancer activity was written by Pramila, T.. And the article was included in Journal of Pharmaceutical Sciences and Research in 2020.Related Products of 1877-75-4 This article mentions the following:

A series of novel aryloxy bis azetinones have been synthesized using benzocaine as a starting compound Benzocaine reacted with benzyl bromide to give N-benzylated benzocaine which underwent nucleophillic addition reaction with hydrazine hydrate to yield 4-(benzylamino)benzohydrazide, further treatment with palladium catalyst gave 4-aminobenzohydrazide. 4-Aminobenzohydrazide was reacted with benzaldehyde to yield (4E,10E)-N’-benzylidene-4-(benzylideneamino)benzohydrazide, which on further reacting with different substituted phenoxyacetyl chlorides gave aryloxy bis azetinone derivatives I (R = H, 4-OMe, 3-Br, etc.). The synthesized compounds were screened for in-vitro anticancer activity and were found to be active. In the experiment, the researchers used many compounds, for example, 2-(4-Methoxyphenoxy)acetic acid (cas: 1877-75-4Related Products of 1877-75-4).

2-(4-Methoxyphenoxy)acetic acid (cas: 1877-75-4) belongs to ethers. The oxygen atom in ethers are more electronegative than carbon, thus the hydrogens which are alpha to the ethers are more acidic than the simple hydrocarbons. Electron-deficient reagents are also stabilized by ethers. For example, borane (BH3) is a useful reagent for making alcohols. Pure borane exists as its dimer, diborane (B2H6), a toxic gas that is inconvenient and hazardous to use. Borane forms stable complexes with ethers, however, and it is often supplied and used as its liquid complex with tetrahydrofuran (THF).Related Products of 1877-75-4

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Wang, Jin et al. published their research in European Journal of Medicinal Chemistry in 2014 | CAS: 605-94-7

2,3-Dimethoxy-5-methylcyclohexa-2,5-diene-1,4-dione (cas: 605-94-7) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. But ether is more polar than alkenes. Autoxidation is the spontaneous oxidation of a compound in air. In the presence of oxygen, ethers slowly autoxidize to form hydroperoxides and dialkyl peroxides. If concentrated or heated, these peroxides may explode. To prevent such explosions, ethers should be obtained in small quantities, kept in tightly sealed containers, and used promptly.Category: ethers-buliding-blocks

Synthesis and antioxidant activities of Coenzyme Q analogues was written by Wang, Jin;Li, Shuo;Yang, Tao;Yang, Jian. And the article was included in European Journal of Medicinal Chemistry in 2014.Category: ethers-buliding-blocks This article mentions the following:

A series of 2,3-dimethoxy-5-methyl-1,4-benzoquinones (Coenzyme Q) substituted at the C-6 position with various groups were designed and synthesized based on the Coenzyme Q10 as potent antioxidant. In vitro antioxidant activities of these compounds were evaluated and compared with com. antioxidant Coenzyme Q10 employing DPPH assay. All these synthesized Coenzyme Q analogs exhibit good antioxidant activities. Of which Compound I bearing a N-benzoylpiperazine group at the C-6 position showed more potent inhibition of DPPH radical than Coenzyme Q10. All these results suggested the applicability of the Coenzyme Q analogs as potent antioxidants for combating oxidative stress. In the experiment, the researchers used many compounds, for example, 2,3-Dimethoxy-5-methylcyclohexa-2,5-diene-1,4-dione (cas: 605-94-7Category: ethers-buliding-blocks).

2,3-Dimethoxy-5-methylcyclohexa-2,5-diene-1,4-dione (cas: 605-94-7) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. But ether is more polar than alkenes. Autoxidation is the spontaneous oxidation of a compound in air. In the presence of oxygen, ethers slowly autoxidize to form hydroperoxides and dialkyl peroxides. If concentrated or heated, these peroxides may explode. To prevent such explosions, ethers should be obtained in small quantities, kept in tightly sealed containers, and used promptly.Category: ethers-buliding-blocks

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Tu, Jian et al. published their research in Journal of Pharmaceutical and Biomedical Analysis in 2005 | CAS: 5367-32-8

3-Methyl-4-nitroanisole (cas: 5367-32-8) belongs to ethers. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides.Synthetic Route of C8H9NO3

Estimation of log Pow values for neutral and basic compounds by microchip microemulsion electrokinetic chromatography with indirect fluorimetric detection (μMEEKC-IFD) was written by Tu, Jian;Halsall, H. Brian;Seliskar, Carl J.;Limbach, Patrick A.;Arias, Francisco;Wehmeyer, Kenneth R.;Heineman, William R.. And the article was included in Journal of Pharmaceutical and Biomedical Analysis in 2005.Synthetic Route of C8H9NO3 This article mentions the following:

Microchip microemulsion electrokinetic chromatog. with indirect fluorimetric detection (μMEEKC-IFD) was used to obtain log P octanol/water (log Pow) values for neutral and basic compounds Six compounds, with log Pow values between 0.38 and 5.03, were used to create a calibration curve relating the log of retention factors (log k) obtained from μMEEKC-IFD with the known log Pow values. The log Pow values for six addnl. compounds were determined using the log k values obtained by μMEEKC-IFD and the linear relationship between log Pow and log k established for the standard compounds The μMEEKC-IFD buffer was composed of 50 mM 3-[cyclohexylamino]-1-propane-sulfonic acid (CAPS) buffer (pH 10.4) containing 1.2% n-heptane (volume/volume), 2% sodium dodecylsulfate (w/v), 8% 1-butanol (volume/volume) and 4 μM 5-carboxytetramethyl-rhodamine (TAMRA) as the fluorophore probe for indirect detection. The μMEEKC-IFD provided an accurate method for estimating log Pow values and also a means for analyzing compounds that are non-fluorescent. In the experiment, the researchers used many compounds, for example, 3-Methyl-4-nitroanisole (cas: 5367-32-8Synthetic Route of C8H9NO3).

3-Methyl-4-nitroanisole (cas: 5367-32-8) belongs to ethers. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides.Synthetic Route of C8H9NO3

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Brazel, Christian et al. published their research in Chemistry – A European Journal in 2014 | CAS: 6972-61-8

3-(2,4-Dimethoxyphenyl)acrylic acid (cas: 6972-61-8) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive. Ethers feature bent C–O–C linkages. In dimethyl ether, the bond angle is 111° and C–O distances are 141 pm. The barrier to rotation about the C–O bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.Recommanded Product: 3-(2,4-Dimethoxyphenyl)acrylic acid

Intramolecular Anion Effect in Polyoxometalate-Based Organocatalysts: Reactivity Enhancement and Chirality Transfer by a Metal Oxide-Organic Cation Interaction was written by Brazel, Christian;Dupre, Nathalie;Malacria, Max;Hasenknopf, Bernold;Lacote, Emmanuel;Thorimbert, Serge. And the article was included in Chemistry – A European Journal in 2014.Recommanded Product: 3-(2,4-Dimethoxyphenyl)acrylic acid This article mentions the following:

An α1-Dawson polyanion bearing a lateral side chain with a 4-aminopyridine end group was synthesized. This organopolyoxometalate catalyzes the addition of indenyl allyl silanes to cinnamoyl fluorides. The polyanionic framework influences the organocatalyst activity and selectivity. A moderate but nonzero chirality transfer from the chiral inorganic framework to the organic substrate was observed In the experiment, the researchers used many compounds, for example, 3-(2,4-Dimethoxyphenyl)acrylic acid (cas: 6972-61-8Recommanded Product: 3-(2,4-Dimethoxyphenyl)acrylic acid).

3-(2,4-Dimethoxyphenyl)acrylic acid (cas: 6972-61-8) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive. Ethers feature bent C–O–C linkages. In dimethyl ether, the bond angle is 111° and C–O distances are 141 pm. The barrier to rotation about the C–O bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.Recommanded Product: 3-(2,4-Dimethoxyphenyl)acrylic acid

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Chen, Xiaofei et al. published their research in Chemical Engineering Journal (Amsterdam, Netherlands) in 2022 | CAS: 105-13-5

(4-Methoxyphenyl)methanol (cas: 105-13-5) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil. At room temperature, ethers are pleasant-smelling colourless liquids. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil.Related Products of 105-13-5

Reinforced catalytic oxidation of polyoxometalate@charge transfer complex by on-site heating from photothermal conversion was written by Chen, Xiaofei;Yang, Aibing;Wang, Gengxin;Wei, Mingfeng;Liu, Ning;Li, Bao;Wu, Lixin. And the article was included in Chemical Engineering Journal (Amsterdam, Netherlands) in 2022.Related Products of 105-13-5 This article mentions the following:

Near IR (NIR) absorption at low energy region has been demonstrated to devoted to photothermal conversion efficiently. This process provides a possibility for valuable extension in emerging photothermal catalysis following a specific approach of mol. composition To exploit novel photothermal materials in increasing the catalytic activity of comment catalysts, a typical yet unnoticed charge transfer (CT) complex of 3,3�5,5�tetramethylbenzidine (TMBCT) is used here as an on-site heater. Through the electrostatic complexation of cationic CT complex bearing strong NIR absorption with series polyanionic clusters, composite catalysts are prepared These nano-assembled catalysts in size of 5-10 nm display integrated NIR photothermal effect and highly enhanced catalysis for the mild oxidation of toluene and its derivatives into corresponding alcs. with high conversion and selection. While NIR photothermal stability of TMBCT is maintained, the catalytic activity of inorganic clusters is largely improved. The increments in conversion unattainable under external heating condition are realized and the extension to the mild oxidation of thioethers and olefins into sulfoxides and epoxides with acceptable catalytic recyclability and structural stability are demonstrated. All results from the detailed characterizations figure out the applicability of the NIR photothermal conversion to the catalytic reactions with similar catalytic centers. In the experiment, the researchers used many compounds, for example, (4-Methoxyphenyl)methanol (cas: 105-13-5Related Products of 105-13-5).

(4-Methoxyphenyl)methanol (cas: 105-13-5) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil. At room temperature, ethers are pleasant-smelling colourless liquids. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil.Related Products of 105-13-5

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Liu, Xiaoyan et al. published their research in Synlett in 2011 | CAS: 54916-28-8

1-(4-(4-Methoxyphenoxy)phenyl)ethanone (cas: 54916-28-8) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. The unique properties of ethers (i.e., that they are strongly polar, with nonbonding electron pairs but no hydroxyl group) enhance the formation and use of many reagents. For example, Grignard reagents cannot form unless an ether is present to share its lone pair of electrons with the magnesium atom. Complexation of the magnesium atom stabilizes the Grignard reagent and helps to keep it in solution.Name: 1-(4-(4-Methoxyphenoxy)phenyl)ethanone

Efficient iron/copper-cocatalyzed O-arylation of phenols with bromoarenes was written by Liu, Xiaoyan;Zhang, Songlin. And the article was included in Synlett in 2011.Name: 1-(4-(4-Methoxyphenoxy)phenyl)ethanone This article mentions the following:

Low catalytic amount CuI and Fe(acac)3 were found to effectively promote the C-O cross-coupling reaction in the presence of K2CO3 as the base. A series of diaryl ethers with different substituents can be synthesized in good to excellent yields. This efficient and economic method is attractive for applications on an industrial scale. In the experiment, the researchers used many compounds, for example, 1-(4-(4-Methoxyphenoxy)phenyl)ethanone (cas: 54916-28-8Name: 1-(4-(4-Methoxyphenoxy)phenyl)ethanone).

1-(4-(4-Methoxyphenoxy)phenyl)ethanone (cas: 54916-28-8) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. The unique properties of ethers (i.e., that they are strongly polar, with nonbonding electron pairs but no hydroxyl group) enhance the formation and use of many reagents. For example, Grignard reagents cannot form unless an ether is present to share its lone pair of electrons with the magnesium atom. Complexation of the magnesium atom stabilizes the Grignard reagent and helps to keep it in solution.Name: 1-(4-(4-Methoxyphenoxy)phenyl)ethanone

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Zubar, Viktoriia et al. published their research in Organometallics in 2022 | CAS: 5367-32-8

3-Methyl-4-nitroanisole (cas: 5367-32-8) belongs to ethers. The oxygen atom in ethers are more electronegative than carbon, thus the hydrogens which are alpha to the ethers are more acidic than the simple hydrocarbons. At room temperature, ethers are pleasant-smelling colourless liquids. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil.HPLC of Formula: 5367-32-8

Dehydrogenative and Redox-Neutral N-Heterocyclization of Aminoalcohols Catalyzed by Manganese Pincer Complexes was written by Zubar, Viktoriia;Brzozowska, Aleksandra;Sklyaruk, Jan;Rueping, Magnus. And the article was included in Organometallics in 2022.HPLC of Formula: 5367-32-8 This article mentions the following:

A new Mn catalyzed heterocyclization of aminoalcs. was accomplished. A wide range of heterocycles were synthesized including, 1,2,3,4-tetrahydroquinolines, dihydroquinolinones and 2,3,4,5-tetrahydro-1H-benzo[b]azepines. The reaction was performed under mild reaction conditions using air and moisture stable Mn catalysts. The desired heterocycles were obtained in good to excellent yields. In the experiment, the researchers used many compounds, for example, 3-Methyl-4-nitroanisole (cas: 5367-32-8HPLC of Formula: 5367-32-8).

3-Methyl-4-nitroanisole (cas: 5367-32-8) belongs to ethers. The oxygen atom in ethers are more electronegative than carbon, thus the hydrogens which are alpha to the ethers are more acidic than the simple hydrocarbons. At room temperature, ethers are pleasant-smelling colourless liquids. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil.HPLC of Formula: 5367-32-8

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem

Ma, Zhiqiang et al. published their research in Applied Catalysis, A: General in 2012 | CAS: 3929-47-3

3-(3,4-Dimethoxyphenyl)propan-1-ol (cas: 3929-47-3) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. But ether is more polar than alkenes. Ethers can form hydrogen bonds with other molecules (alcohols, amines, etc.) that have O―H or N―H bonds. The ability to form hydrogen bonds with other compounds makes ethers particularly good solvents for a wide variety of organic compounds and a surprisingly large number of inorganic compounds.HPLC of Formula: 3929-47-3

Controlling the selectivity to chemicals from lignin via catalytic fast pyrolysis was written by Ma, Zhiqiang;Troussard, Ekaterina;van Bokhoven, Jeroen A.. And the article was included in Applied Catalysis, A: General in 2012.HPLC of Formula: 3929-47-3 This article mentions the following:

The catalytic fast pyrolysis of alk. lignin to useful chems. was investigated using zeolite catalysts with different acidity and pore size. The catalyst played dual roles in this process. In its acid form, it catalytically converted the depolymerized intermediates into desirable and more stable products. This and their surface prevented repolymn. and coke formation. The yield of liquid and the selectivity to desired products can be controlled by tuning of the acidity and pore size of the catalyst. Using no catalyst yielded 40 weight% of liquid, which mainly consisted of 6 weight% (carbon yield) of phenols and 19 weight% (carbon yield) of phenol alkoxy species. The highest yield of phenol alkoxy species was obtained over H-ZSM5 of extremely low number of acid sites; liquid yield of 51 weight% and carbon yield of 24 weight%. The highest yield of liquid (75 weight%) was obtained over H-USY, which had the largest pore size and lowest Si/Al ratio, thus the largest number of acid sites among all the catalyst tested; the carbon yield of aromatic hydrocarbons was around 40 weight% at 650 °C. Depolymerized lignin products undergo consecutive reaction to form phenol alkoxy, phenols, and eventually aromatic hydrocarbons. In the experiment, the researchers used many compounds, for example, 3-(3,4-Dimethoxyphenyl)propan-1-ol (cas: 3929-47-3HPLC of Formula: 3929-47-3).

3-(3,4-Dimethoxyphenyl)propan-1-ol (cas: 3929-47-3) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. But ether is more polar than alkenes. Ethers can form hydrogen bonds with other molecules (alcohols, amines, etc.) that have O―H or N―H bonds. The ability to form hydrogen bonds with other compounds makes ethers particularly good solvents for a wide variety of organic compounds and a surprisingly large number of inorganic compounds.HPLC of Formula: 3929-47-3

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem