Fuchigami, Hikari et al. published their research in Scientia Pharmaceutica in 2020 | CAS: 2380-78-1

4-Hydroxy-3-methoxyphenethanol (cas: 2380-78-1) belongs to ethers. Esters typically have a pleasant smell; those of low molecular weight are commonly used as fragrances and are found in essential oils and pheromones. Esters contain a carbonyl center, which gives rise to 120° C–C–O and O–C–O angles. Unlike amides, esters are structurally flexible functional groups because rotation about the C–O–C bonds has a low barrier. Their flexibility and low polarity is manifested in their physical properties; they tend to be less rigid (lower melting point) and more volatile (lower boiling point) than the corresponding amides. Related Products of 2380-78-1

Voltammetric behaviour of drug molecules as a predictor of metabolic liabilities was written by Fuchigami, Hikari;Bal, Mandeep K.;Brownson, Dale A. C.;Banks, Craig E.;Jones, Alan M.. And the article was included in Scientia Pharmaceutica in 2020.Related Products of 2380-78-1 The following contents are mentioned in the article:

Electron transfer plays a vital role in drug metabolism and underlying toxicity mechanisms. Currently, pharmaceutical research relies on pharmacokinetics (PK) and absorption, distribution, metabolism, elimination and toxicity (ADMET) measurements to understand and predict drug reactions in the body. Metabolic stability (and toxicity) prediction in the early phases of the drug discovery and development process is key in identifying a suitable lead compound for optimization. Voltammetric methods have the potential to overcome the significant barrier of new drug failure rates, by giving insight into phase I metabolism events which can have a direct bearing on the stability and toxicity of the parent drug being dosed. Herein, we report for the first time a data-mining investigation into the voltammetric behavior of reported drug mols. and their correlation with metabolic stability (indirectly measured via t1/2), as a potential predictor of drug stability/toxicity in vivo. We observed an inverse relationship between oxidation potential and drug stability. Furthermore, we selected and prepared short- (<10 min) and longer-circulation (>2 h) drug mols. to prospectively survey the relationship between oxidation potential and stability. This study involved multiple reactions and reactants, such as 4-Hydroxy-3-methoxyphenethanol (cas: 2380-78-1Related Products of 2380-78-1).

4-Hydroxy-3-methoxyphenethanol (cas: 2380-78-1) belongs to ethers. Esters typically have a pleasant smell; those of low molecular weight are commonly used as fragrances and are found in essential oils and pheromones. Esters contain a carbonyl center, which gives rise to 120° C–C–O and O–C–O angles. Unlike amides, esters are structurally flexible functional groups because rotation about the C–O–C bonds has a low barrier. Their flexibility and low polarity is manifested in their physical properties; they tend to be less rigid (lower melting point) and more volatile (lower boiling point) than the corresponding amides. Related Products of 2380-78-1

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem