Bio-inspired lanthanum-ortho-quinone catalysis for aerobic alcohol oxidation: semi-quinone anionic radical as redox ligand was written by Zhang, Ruipu;Zhang, Runze;Jian, Ruijun;Zhang, Long;Zhang, Ming-Tian;Xia, Yu;Luo, Sanzhong. And the article was included in Nature Communications in 2022.Application In Synthesis of (4-Methoxyphenyl)methanol This article mentions the following:
Oxidation reactions are fundamental transformations in organic synthesis and chem. industry. With oxygen or air as terminal oxidant, aerobic oxidation catalysis provides the most sustainable and economic oxidation processes. Most aerobic oxidation catalysis employs redox metal as its active center. While nature provides non-redox metal strategy as in pyrroloquinoline quinone (PQQ)-dependent methanol dehydrogenases (MDH), such an effective chem. version is unknown. Inspired by the recently discovered rare earth metal-dependent enzyme Ln-MDH (methanol dehydrogenases), this study shows that an open-shell semi-quinone anionic radical species in complexing with lanthanum could serve as a very efficient aerobic oxidation catalyst under ambient conditions. In this catalyst, the lanthanum(III) ion serves only as a Lewis acid promoter and the redox process occurs exclusively on the semiquinone ligand. The catalysis is initiated by 1e–-reduction of lanthanum-activated ortho-quinone to a semiquinone-lanthanum complex La(SQ-.)2, which undergoes a coupled O-H/C-H (PCHT: proton coupled hydride transfer) dehydrogenation for aerobic oxidation of alcs. such as benzyl alc., 1,4-butane-diol, 1-(2-furyl)ethanol, etc. with up to 330 h-1 TOF. In the experiment, the researchers used many compounds, for example, (4-Methoxyphenyl)methanol (cas: 105-13-5Application In Synthesis of (4-Methoxyphenyl)methanol).
(4-Methoxyphenyl)methanol (cas: 105-13-5) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. At room temperature, ethers are pleasant-smelling colourless liquids. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil.Application In Synthesis of (4-Methoxyphenyl)methanol
Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem