Bull, James N. et al. published their research in Chemical Science in 2016 | CAS: 605-94-7

2,3-Dimethoxy-5-methylcyclohexa-2,5-diene-1,4-dione (cas: 605-94-7) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. But on the other hand, ethers undergo cleavage by reaction with acids. Ethers feature bent C–O–C linkages. In dimethyl ether, the bond angle is 111° and C–O distances are 141 pm. The barrier to rotation about the C–O bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.Category: ethers-buliding-blocks

Ultrafast dynamics of formation and autodetachment of a dipole-bound state in an open-shell π-stacked dimer anion was written by Bull, James N.;West, Christopher W.;Verlet, Jan R. R.. And the article was included in Chemical Science in 2016.Category: ethers-buliding-blocks This article mentions the following:

Isolated π-stacked dimer radical anions present the simplest model of an excess electron in a π-stacked environment. Here, frequency-, angle-, and time-resolved photoelectron imaging together with electronic structure calculations have been used to characterize the π-stacked coenzyme Q0 dimer radical anion and its exited state dynamics. In the ground electronic state, the excess electron is localised on one monomer with a planar para-quinone ring, which is solvated by the second monomer in which carbonyl groups are bent out of the para-quinone ring plane. Through the π-stacking interaction, the dimer anion exhibits a number of charge-transfer (intermol.) valence-localised resonances situated in the detachment continuum that undergo efficient internal conversion to a cluster dipole-bound state (DBS) on a ∼60 fs timescale. In turn, the DBS undergoes vibration-mediated autodetachment on a 2.0 ± 0.2 ps timescale. Exptl. vibrational structure and supporting calculations assign the intermol. dynamics to be facilitated by vibrational wagging modes of the carbonyl groups on the non-planar monomer. At photon energies ∼0.6-1.0 eV above the detachment threshold, a competition between photoexcitation of an intermol. resonance leading to the DBS, and photoexcitation of an intramol. resonance leading to monomer-like dynamics further illustrates the π-stacking specific dynamics. Overall, this study provides the first direct observation of both internal conversion of resonances into a DBS, and characterization of a vibration-mediated autodetachment in real-time. In the experiment, the researchers used many compounds, for example, 2,3-Dimethoxy-5-methylcyclohexa-2,5-diene-1,4-dione (cas: 605-94-7Category: ethers-buliding-blocks).

2,3-Dimethoxy-5-methylcyclohexa-2,5-diene-1,4-dione (cas: 605-94-7) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. But on the other hand, ethers undergo cleavage by reaction with acids. Ethers feature bent C–O–C linkages. In dimethyl ether, the bond angle is 111° and C–O distances are 141 pm. The barrier to rotation about the C–O bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.Category: ethers-buliding-blocks

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem