Haas, Ronja et al. published their research in Journal of the Electrochemical Society in 2021 | CAS: 112-49-2

2,5,8,11-Tetraoxadodecane (cas: 112-49-2) belongs to ethers. The oxygen atom in ethers are more electronegative than carbon, thus the hydrogens which are alpha to the ethers are more acidic than the simple hydrocarbons. The unique properties of ethers (i.e., that they are strongly polar, with nonbonding electron pairs but no hydroxyl group) enhance the formation and use of many reagents. For example, Grignard reagents cannot form unless an ether is present to share its lone pair of electrons with the magnesium atom. Complexation of the magnesium atom stabilizes the Grignard reagent and helps to keep it in solution.Name: 2,5,8,11-Tetraoxadodecane

Understanding transport of atmospheric gases in liquid electrolytes for lithium-air batteries was written by Haas, Ronja;Murat, Michael;Weiss, Manuel;Janek, Juergen;Natan, Amir;Schroeder, Daniel. And the article was included in Journal of the Electrochemical Society in 2021.Name: 2,5,8,11-Tetraoxadodecane This article mentions the following:

In metal-air batteries, carbon dioxide (CO2) and nitrogen (N2) are, apart from oxygen (O2), also present as dissolved species in the liquid electrolyte. These dissolved gases can strongly influence the battery performance, as they affect the discharge mechanism and the stability of the lithium metal anode. Therefore, their solubility and diffusivity are important parameters, that are rarely considered in the development of electrolytes for metal-air batteries. Addnl., the diffusion coefficients are calculated through mol. dynamics simulations. The results agree well with the exptl. data. Furthermore, the influence of solvent parameters, such as surface tension and viscosity, on the solubility and the diffusivity as well as the impact of the addition of LiTFSI as conducting salt are investigated. The reported data will help to assess the impact of dissolved gases on the cell chem. of nonaqueous lithium-air batteries, especially on the solid electrolyte interphase (SEI) at the lithium anode, and to predict diffusivity and gas solubility in other electrolytes. In the experiment, the researchers used many compounds, for example, 2,5,8,11-Tetraoxadodecane (cas: 112-49-2Name: 2,5,8,11-Tetraoxadodecane).

2,5,8,11-Tetraoxadodecane (cas: 112-49-2) belongs to ethers. The oxygen atom in ethers are more electronegative than carbon, thus the hydrogens which are alpha to the ethers are more acidic than the simple hydrocarbons. The unique properties of ethers (i.e., that they are strongly polar, with nonbonding electron pairs but no hydroxyl group) enhance the formation and use of many reagents. For example, Grignard reagents cannot form unless an ether is present to share its lone pair of electrons with the magnesium atom. Complexation of the magnesium atom stabilizes the Grignard reagent and helps to keep it in solution.Name: 2,5,8,11-Tetraoxadodecane

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem