Mori-Quiroz, Luis M. et al. published their research in Organic Letters in 2016 | CAS: 605-94-7

2,3-Dimethoxy-5-methylcyclohexa-2,5-diene-1,4-dione (cas: 605-94-7) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive. Ethers feature bent C–O–C linkages. In dimethyl ether, the bond angle is 111° and C–O distances are 141 pm. The barrier to rotation about the C–O bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.Related Products of 605-94-7

Exploiting Alkylquinone Tautomerization: Amine Benzylation was written by Mori-Quiroz, Luis M.;Clift, Michael D.. And the article was included in Organic Letters in 2016.Related Products of 605-94-7 This article mentions the following:

A general protocol for the synthesis of benzylic amines via side-chain amination of alkylquinones is reported. The reactions are initiated by the tautomerization of an alkylquinone to the corresponding quinone methide, which is subsequently trapped in situ by an amine nucleophile. This process is promoted by tertiary amines in protic solvents under mild conditions and is compatible with many functional groups. 1,2- and 1,4-benzoquinones, as well as naphthoquinones, participate in this reaction using a wide range of primary and secondary amines/anilines. The synthetic utility of this transformation is also explored. In the experiment, the researchers used many compounds, for example, 2,3-Dimethoxy-5-methylcyclohexa-2,5-diene-1,4-dione (cas: 605-94-7Related Products of 605-94-7).

2,3-Dimethoxy-5-methylcyclohexa-2,5-diene-1,4-dione (cas: 605-94-7) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive. Ethers feature bent C–O–C linkages. In dimethyl ether, the bond angle is 111° and C–O distances are 141 pm. The barrier to rotation about the C–O bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.Related Products of 605-94-7

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem