Solid Electrolyte Interphase Evolution on Lithium Metal in Contact with Glyme-Based Electrolytes was written by Nojabaee, Maryam;Kuester, Kathrin;Starke, Ulrich;Popovic, Jelena;Maier, Joachim. And the article was included in Small in 2020.Recommanded Product: 112-49-2 This article mentions the following:
The formation of a stable solid electrolyte interphase (SEI) is a prerogative for functional lithium metal batteries. Herein, the formation and evolution of such SEI in contact with glyme-based electrolytes is investigated under open circuit voltage and several constant current cycles. An important conclusion of the study is that LixSy species are nonbeneficial SEI components, compared to the Li3N counterpart. In addition, chem. (XPS, XPS) and electrochem. (impedance spectroscopy) evolution of SEI under galvanostatic conditions are comprehensively tracked. In the experiment, the researchers used many compounds, for example, 2,5,8,11-Tetraoxadodecane (cas: 112-49-2Recommanded Product: 112-49-2).
2,5,8,11-Tetraoxadodecane (cas: 112-49-2) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive. Autoxidation is the spontaneous oxidation of a compound in air. In the presence of oxygen, ethers slowly autoxidize to form hydroperoxides and dialkyl peroxides. If concentrated or heated, these peroxides may explode. To prevent such explosions, ethers should be obtained in small quantities, kept in tightly sealed containers, and used promptly.Recommanded Product: 112-49-2
Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem