Amrutha, S. R. published the artcileControl of π-Stacking for Highly Emissive Poly(p-phenylenevinylene)s: Synthesis and Photoluminescence of New Tricyclodecane Substituted Bulky Poly(p-phenylenevinylene)s and Its Copolymers, Application In Synthesis of 146370-51-6, the publication is Journal of Physical Chemistry B (2006), 110(9), 4083-4091, database is CAplus and MEDLINE.
In the present work, we have demonstrated a facile approach to increase the luminescence of the poly (p-phenylenevinylene)s via controlling the mol. aggregates induced by π-stacking. We have synthesized new bulky tricyclodecane (TCD) substituted PPVs: poly(2-methoxy-5-tricyclodecanemethyleneoxy-1,4-phenylenevinylene) (MTCD-PPV), poly(bis-2,5-tricyclodecanemethyleneoxy-1,4-phenylenevinylene) (BTCD-PPV), and a series of sym. substituted bulky PPV copolymers (P-1-P-7) covering the entire composition range from 0 to 100 mol %. The structures of the monomers and polymers were confirmed by 1H NMR and FTIR, and the mol. weights were determined by gel permeation chromatog. The composition anal. by NMR revealed that the bulky monomer was highly reactive and the incorporation of bulky units in MEH-PPV increased irresp. of the feed ratio. The polymers possess good solubility, high mol. weights, good thermal stability, and so forth. The mol. weights of the PPV copolymers were also significantly affected by the bulky substitution: the higher the incorporation of bulky units, the lower the mol. weight The absorption and emission studies revealed that there was no influence on the MEH-PPV by TCD substitution in solution whereas in the solid state the photoluminescence intensity of PPV increased more than 10 times. The luminescence increase in PPV was observed throughout the entire bulk and was not confined to any particular domain in the polymer. The bulky PPV copolymers showed that both the luminescence intensity (in film) and quantum yields (in solution) increased with an increase in the extent of BTCD incorporation in the MEH-PPV and attained a maximum for 50% BTCD. The TCD unit has thus proved to be an efficient bulky susbstituent for PPV as it controls the π-stack-induced mol. aggregates in the polymer chains by increasing the interchain distances. The new bulky PPV copolymers are highly soluble, thermally stable, and highly luminescent besides being economically cheap compared to the other materials reported so far for the bulkier approach in π-conjugated materials.
Journal of Physical Chemistry B published new progress about 146370-51-6. 146370-51-6 belongs to ethers-buliding-blocks, auxiliary class Benzene,Ether, name is 1-((2-Ethylhexyl)oxy)-4-methoxybenzene, and the molecular formula is C15H24O2, Application In Synthesis of 146370-51-6.
Referemce:
https://en.wikipedia.org/wiki/Ether,
Ether | (C2H5)2O – PubChem