Experimental and theoretical studies on the pyrolysis mechanism of β-1-type lignin dimer model compound was written by Jiang, Xiao-Yan;Lu, Qiang;Ye, Xiao-Ning;Hu, Bin;Dong, Chang-Qing. And the article was included in BioResources in 2016.Recommanded Product: 3-Hydroxy-5-methoxybenzaldehyde This article mentions the following:
A β-1-type lignin dimer, 1,2-bis(3,5-dimethoxyphenyl)propane-1,3-diol was employed as a model compound in this study. The pyrolysis mechanisms and formation pathways of the pyrolytic products were investigated by using d. functional theory (DFT) calculations and anal. pyrolysis-gas chromatog./mass spectrometry (Py-GC/MS). Four possible initial pyrolysis mechanisms were proposed, including the Cα-Cβ homolysis mechanism and three concerted decomposition mechanisms (1, 2, and 3). Results indicated that the lignin dimer decomposed via two concerted decomposition mechanisms, forming 3,5-dimethoxybenzaldehyde, 1,3-dimethoxy-5-vinylbenzene, 3-hydroxy-5-methoxybenzaldehyde, and 3-methoxybenzaldehyde. 3,5-Dimethoxybenzaldehyde was the major product, accounting for greater than 50% of all pyrolytic products. In addition to the two concerted decomposition mechanisms, Cα-Cβ homolysis was a secondary pyrolysis mechanism during the lignin dimer pyrolysis process, and the pyrolytic products included 3,5-dimethoxybenzyl alc., 3,5-dimethoxyphenethyl alc., 1,3-dimethoxybenzene, and 1,3-dimethoxy-5-methylbenzene. A third concerted decomposition mechanism was judged to be the least likely pathway to occur because of the high activation energy requirement. In the experiment, the researchers used many compounds, for example, 3-Hydroxy-5-methoxybenzaldehyde (cas: 57179-35-8Recommanded Product: 3-Hydroxy-5-methoxybenzaldehyde).
3-Hydroxy-5-methoxybenzaldehyde (cas: 57179-35-8) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. But ether is more polar than alkenes. Autoxidation is the spontaneous oxidation of a compound in air. In the presence of oxygen, ethers slowly autoxidize to form hydroperoxides and dialkyl peroxides. If concentrated or heated, these peroxides may explode. To prevent such explosions, ethers should be obtained in small quantities, kept in tightly sealed containers, and used promptly.Recommanded Product: 3-Hydroxy-5-methoxybenzaldehyde
Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem