Inter- and intra-molecular organocatalysis of SN2 fluorination by crown ether: kinetics and quantum chemical analysis was written by Oh, Young-Ho;Yun, Wonhyuck;Kim, Chul-Hee;Jang, Sung-Woo;Lee, Sung-Sik;Lee, Sungyul;Kim, Dong-Wook. And the article was included in Molecules in 2021.Reference of 3929-47-3 This article mentions the following:
We present the intra- and inter-mol. organocatalysis of SN2 fluorination using CsF by crown ether to estimate the efficacy of the promoter and to elucidate the reaction mechanism. The yields of intramol. SN2 fluorination of the veratrole substrates are measured to be very small (<1% in 12 h) in the absence of crown ether promoters, whereas the SN2 fluorination of the substrate possessing a crown ether unit proceeds to near completion (~99%) in 12 h. We also studied the efficacy of intermol. rate acceleration by an independent promoter 18-crown-6 for comparison. We find that the fluorinating yield of a veratrole substrate (leaving group = -OMs) in the presence of 18-crown-6 follows the almost identical kinetic course as that of intramol. SN2 fluorination, indicating the mechanistic similarity of intra- and inter-mol. organocatalysis of the crown ether for SN2 fluorination. The calculated relative Gibbs free energies of activation for these reactions, in which the crown ether units act as Lewis base promoters for SN2 fluorination, are in excellent agreement with the exptl. measured yields of fluorination. The role of the metal salt CsF is briefly discussed in terms of whether it reacts as a contact ion pair or as a “free” nucleophile F–. In the experiment, the researchers used many compounds, for example, 3-(3,4-Dimethoxyphenyl)propan-1-ol (cas: 3929-47-3Reference of 3929-47-3).
3-(3,4-Dimethoxyphenyl)propan-1-ol (cas: 3929-47-3) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. But ether is more polar than alkenes. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides.Reference of 3929-47-3
Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem