Headspace analysis of ammonium nitrate variants and the effects of differing vapor profiles on canine detection was written by DeGreeff, Lauryn E.;Peranich, Kimberly. And the article was included in Forensic Chemistry in 2021.Application In Synthesis of 2-(2-Methoxyethoxy)ethanol This article mentions the following:
Canines continue to be one of the most frequently deployed tool in the detection of explosives, and particularly homemade explosives (HMEs), in part, due to the ease in training to new HME materials as threats arise. The majority of HMEs encountered contain ammonium nitrate (AN), and previous research has measured the release of ammonia from AN, and found that the ammonia vapor concentration varies with form, purity, and environment, but this is has not been correlated to canine detection proficiency. In this research, the headspace anal. of AN variants was carried out using solid phase microextraction (SPME) with gas chromatog./mass spectrometry (GC/MS). Ammonia vapor from the AN was extracted using on-fiber derivatization, while the presence of other volatiles in the headspace of these variants were also characterized by a traditional SPME extraction These results were correlated to canine testing, where canines previously trained in odor detection were provided laboratory-grade AN for odor imprinting, after which they were to locate other AN variants in a series of simple detection tasks. Headspace anal. showed variations in both the amount of ammonia as well as other volatile compounds in the headspace of the various AN samples, as well as changes in the vapor profiles due to changing environmental conditions. Canine data indicated that the differences in the headspace profiles of the samples may confound detection when canines were trained on laboratory-grade AN alone, while increased ammonia vapor availability from certain samples may have improved detection by this group of canines. In the experiment, the researchers used many compounds, for example, 2-(2-Methoxyethoxy)ethanol (cas: 111-77-3Application In Synthesis of 2-(2-Methoxyethoxy)ethanol).
2-(2-Methoxyethoxy)ethanol (cas: 111-77-3) belongs to ethers. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil. The unique properties of ethers (i.e., that they are strongly polar, with nonbonding electron pairs but no hydroxyl group) enhance the formation and use of many reagents. For example, Grignard reagents cannot form unless an ether is present to share its lone pair of electrons with the magnesium atom. Complexation of the magnesium atom stabilizes the Grignard reagent and helps to keep it in solution.Application In Synthesis of 2-(2-Methoxyethoxy)ethanol
Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem