Simple exploration of 2-((Benzyloxy)methyl)oxirane

According to the analysis of related databases, 2930-05-4, the application of this compound in the production field has become more and more popular.

In the chemical reaction process, reaction time, type of solvent, can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product. An updated downstream synthesis route of 2930-05-4 as follows. 2930-05-4

To a solution of LiAlH4 (7.56 g, 199 mmol) in anhydrous tetrahydrofuran (100 mL) was added a solution of 2-(benzyloxymethyl)oxirane (21.8 g, 132 mmol, 20.1 mL) in anhydrous tetrahydrofuran (300 mL) dropwise at 0 C. under nitrogen atmosphere. The mixture was then stirred for 1 hour. On completion, the reaction mixture was quenched with water (15 mL), then 15% sodium hydroxide solution (15 mL) was added, and the mixture was stirred for a further 15 minutes until no precipitate formed. Next, the inorganic salt precipitate was filtered off and the filter cake was washed with ethyl acetate (2¡Á100 mL). The combine organic phase was dried over anhydrous magnesium sulfate, filtered and concentrated in vacuo to give a residue. The residue was purified by silica gel chromatography (petroleum ether:ethyl acetate=2:1) to give the title compound (21.3 g, 96% yield) as a colorless oil. 1H NMR (400 MHz, CDCl3) delta 7.40-7.29 (m, 5H), 4.57 (s, 2H), 4.08-3.94 (m, 1H), 3.49 (dd, J=3.2, 9.2 Hz, 1H), 3.30 (dd, J=8.4, 9.2 Hz, 1H), 2.40 (d, J=2.4 Hz, 1H), 1.16 (d, J=6.4 Hz, 3H).

According to the analysis of related databases, 2930-05-4, the application of this compound in the production field has become more and more popular.

Reference:
Patent; Kymera Therapeutics, Inc.; Mainolfi, Nello; Ji, Nan; Kluge, Arthur F.; Weiss, Matthew M.; Zhang, Yi; (1443 pag.)US2019/192668; (2019); A1;,
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem