Share a compound : 588-63-6

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 588-63-6.

Each compound has different characteristics, and only by selecting the characteristics of the compound suitable for a specific situation can the compound be applied on a large scale. 588-63-6, name is (3-Bromopropoxy)benzene, This compound has unique chemical properties. The synthetic route is as follows., name: (3-Bromopropoxy)benzene

Maslinic acid (MA) (150 mg, 0.3 mmol) was dissolved in dry DMF (5 mL), and finely grounded potassium carbonate (200 mg, 1.45 mmol) was added. After 60 min of stirring at 25 ¡ãC, (3-bromopropoxy)-benzene (150 mg, 0.7 mmol) was added, and stirring was continued for another 18 h. The mixture was poured into ice cold hydrochloride acid (5percent, 50 mL), and the white precipitate was filtered off. Chromatographic purification (silica gel, hexane/ethyl acetate, 7:3) followed by recrystallization (ethanol) gave the product; yield: 150 mg, 83percent; m.p. 166?170 ¡ãC; RF = 0.4 (n-hexane/ethyl acetate, 1:1); [alpha]D = +45.8¡ã (c 0.33, CHCl3); IR (KBr): nu = 3424vs, 2946vs, 2930vs, 2878m, 2864m, 1726vs, 1602m, 1498m, 1470s, 1458m, 1384s, 1364m, 1242s, 1202m, 1180m, 1172m, 1162s, 1124m, 1080m, 1052s, 1034m cm?1; 1H NMR (400 MHz, CDCl3): delta = 7.30?7.24 (m, 2H, CHaromat), 6.94 (dd, J = 7.3, 7.3 Hz, 1H, CHaromat), 6.88 (d, J = 8.0 Hz, 2H, CHaromat), 5.25 (dd, J = 3.4, 3.4 Hz, 1H, CH (12)), 4.27?4.14 (m, 2H, CH2 (31)), 4.03 (ddd, J = 6.1, 6.1, 1.5 Hz, 1H, CH2 (33)), 3.68 (ddd, J = 11.5, 9.7, 4.4 Hz, 1H, CH (2)), 2.99 (d, J = 9.5 Hz, 1H, CH (3)), 2.87 (dd, J = 13.8, 3.8 Hz, 1H, CH (18)), 2.18 (brs, 2H, OH), 2.15?2.06 (m, 2H, CH2 (32)), 2.00?1.86 (m, 2H, CHa (16) + CHa (1)), 1.83 (dd, J = 8.8, 3.4 Hz, 2H, CH2 (11)), 1.75?1.66 (ddd, J = 13.8, 13.8, 4.4 Hz, 1H, CHa (7)), 1.67?1.58 (m, 3H, CHa (19) + CHa (15) + CHb (16)), 1.57 (m, 1H, CH (9)), 1.54?1.45 (m, 2H, CHa (22) + CHa (6)), 1.43?1.35 (m, 1H, CHb (7)), 1.33?1.23 (m, 2H, CHa (21) + CHb (6)), 1.22?1.14 (m, 3H, CHb (19) + CHb (21) + CHb (22)), 1.11 (s, 3H, CH3 (27)), 1.02 (s, 3H, CH3 (23)), 1.05?0.95 (m, 1H, CHb (15)), 0.92 (s, 3H, CH3 (25)), 0.90 (s, 3H, CH3 (30)), 0.89 (s, 3H, CH3 (29)), 0.88?0.80 (m, 1H, CHb (1)), 0.81 (s, 3H, CH3 (24)), 0.80 (m, 1H, CH (5)), 0.66 (s, 3H, CH3 (26)) ppm; 13C NMR (100 Hz, CDCl3): delta = 177.8 (C=O, C28), 158.9 (Caromat, C34), 144.0 (C=CH, C13), 129.6 (CHaromat, C35), 122.4 (CH=C, C12), 120.9 (CHaromat, C36), 114.5 (CHaromat, C37), 84.1 (CHOH, C3), 69.1 (CHOH, C2), 64.3 (CH2, C31), 61.1 (CH2, C33), 55.4 (CH, C5), 47.7 (CH, C9), 46.9 (Cquart, C17), 46.5 (CH2, C1), 46.0 (CH2, C19), 41.9 (Cquart, C14), 41.4 (CH, C18), 39.5 (Cquart, C8), 39.3 (Cquart, C4), 38.4 (Cquart, C10), 34.0 (CH2, C21), 33.2 (CH3, C30), 32.7 (CH2, C7), 32.6 (CH2, C22), 30.9 (Cquart, C20), 28.8 (CH2, C32), 28.8 (CH3, C23), 27.7 (CH2, C15), 26.1 (CH3, C27), 23.8 (CH3, C29), 23.6 (CH2, C11), 23.1 (CH2, C16), 18.5 (CH2, C6), 17.1 (CH3, C26), 16.9 (CH3, C24), 16.7 (CH3, C25) ppm; MS (ESI, MeOH, source CID): m/z = 607.3 (20percent, [M + H]+), 629.3 (100percent, [M + Na]+), 929.3 (60percent, [3M + K + H]2+); analysis for C39H58O5 (606.87): C 77.18, H 9.63; found C 77.03, H 9.71.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 588-63-6.

Reference:
Article; Siewert, Bianka; Csuk, Rene; European Journal of Medicinal Chemistry; vol. 74; (2014); p. 1 – 6;,
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem