Duden, Torben et al. published their research in Chemistry (Basel, Switzerland) in 2020 | CAS: 103-16-2

4-Benzyloxyphenol (cas: 103-16-2) belongs to ethers. Carboxylic acid esters of low molecular weight are colourless, volatile liquids with pleasant odours, slightly soluble in water. Because of their lack of hydrogen-bond-donating ability, esters do not self-associate. Consequently, esters are more volatile than carboxylic acids of similar molecular weight.Synthetic Route of C13H12O2

Towards a real knotaxane was written by Duden, Torben;Luening, Ulrich. And the article was included in Chemistry (Basel, Switzerland) in 2020.Synthetic Route of C13H12O2 The following contents are mentioned in the article:

Two classes of mech. interlocked mols., [3]rotaxanes and knotted [1]rotaxanes, were the subject of this investigation. The necessary building blocks, alkyne-terminated axles containing two ammonium ions and azide-terminated stoppers, and azide-containing substituted macrocycles, have been synthesized and characterized. Different [3]rotaxanes were synthesized by copper-catalyzed “click” reactions between the azide stoppers and [3]pseudorotaxanes formed from the dialkyne axles and crown ethers (DB24C8). Methylation of the triazoles formed by the “click” reaction introduced a second binding site, and switching via deprotonation/protonation was investigated. In preliminary tests for the synthesis of a knotted [1]rotaxane, pseudorotaxanes were formed from azide-containing substituted macrocycles and dialkyne substituted diammonium axles, and copper-catalyzed “click” reactions were carried out. Mass spectral analyses showed successful double “click” reactions between two modified macrocycles and one axle. Whether a knotted [1]rotaxane was formed could not be determined This study involved multiple reactions and reactants, such as 4-Benzyloxyphenol (cas: 103-16-2Synthetic Route of C13H12O2).

4-Benzyloxyphenol (cas: 103-16-2) belongs to ethers. Carboxylic acid esters of low molecular weight are colourless, volatile liquids with pleasant odours, slightly soluble in water. Because of their lack of hydrogen-bond-donating ability, esters do not self-associate. Consequently, esters are more volatile than carboxylic acids of similar molecular weight.Synthetic Route of C13H12O2

Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem