Non-nucleoside inhibitors of BasE, an adenylating enzyme in the siderophore biosynthetic pathway of the opportunistic pathogen Acinetobacter baumannii was written by Neres, Joao;Engelhart, Curtis A.;Drake, Eric J.;Wilson, Daniel J.;Fu, Peng;Boshoff, Helena I.;Barry, Clifton E.;Gulick, Andrew M.;Aldrich, Courtney C.. And the article was included in Journal of Medicinal Chemistry in 2013.Recommanded Product: 156635-90-4 This article mentions the following:
Siderophores are small-mol. iron chelators produced by bacteria and other microorganisms for survival under iron limiting conditions such as found in a mammalian host. Siderophore biosynthesis is essential for the virulence of many important Gram-neg. pathogens including Acinetobacter baumannii, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Escherichia coli. We performed high-throughput screening against BasE, which is involved in siderophore biosynthesis in A. baumannii, and identified 6-phenyl-1-(pyridin-4-ylmethyl)-1H-pyrazolo[3,4-b]pyridine-4-carboxylic acid 15. Herein we report the synthesis, biochem., and microbiol. evaluation of a systematic series of analogs of the HTS hit 15. Analog 67 is the most potent analog with a KD of 2 nM against BasE. Structural characterization of the inhibitors with BasE reveals that they bind in a unique orientation in the active site, occupying all three substrate binding sites, and thus can be considered as multisubstrate inhibitors. These results provide a foundation for future studies aimed at increasing both enzyme potency and antibacterial activity. In the experiment, the researchers used many compounds, for example, (4-((4-Methoxybenzyl)oxy)phenyl)boronic acid (cas: 156635-90-4Recommanded Product: 156635-90-4).
(4-((4-Methoxybenzyl)oxy)phenyl)boronic acid (cas: 156635-90-4) belongs to ethers. Ether is less polar than esters, alcohols or amines because of the oxygen atom that is unable to participate in hydrogen bonding due to the presence of bulky alkyl groups on both sides of the oxygen atom. The unique properties of ethers (i.e., that they are strongly polar, with nonbonding electron pairs but no hydroxyl group) enhance the formation and use of many reagents. For example, Grignard reagents cannot form unless an ether is present to share its lone pair of electrons with the magnesium atom. Complexation of the magnesium atom stabilizes the Grignard reagent and helps to keep it in solution.Recommanded Product: 156635-90-4
Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem