NNB-type tridentate boryl ligands enabling a highly active iridium catalyst for C-H borylation was written by Ding, Siyi;Wang, Linghua;Miao, Zongcheng;Li, Pengfei. And the article was included in Molecules in 2019.Computed Properties of C14H21BO4 This article mentions the following:
Boryl ligands play a very important role in catalysis because of their very high electron-donating property. NNB-type boryl anions were designed as tridentate ligands to promote aryl C-H borylation. In combination with [IrCl(COD)]2, they generate a highly active catalyst for a broad range of (hetero)arene substrates, including highly electron-rich and/or sterically hindered ones. This work provides a new NNB-type tridentate boryl ligand to support homogeneous organometallic catalysis. In the experiment, the researchers used many compounds, for example, 2-(3,5-Dimethoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (cas: 365564-07-4Computed Properties of C14H21BO4).
2-(3,5-Dimethoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (cas: 365564-07-4) belongs to ethers. Of all the functional groups, ethers are the least reactive ones. Ether bonds are quite stable towards bases, oxidizing agents and reducing agents. At room temperature, ethers are pleasant-smelling colourless liquids. Relative to alcohols, ethers are generally less dense, are less soluble in water, and have lower boiling points. They are relatively unreactive, and as a result they are useful as solvents for fats, oils, waxes, perfumes, resins, dyes, gums, and hydrocarbons. Vapours of certain ethers are used as insecticides, miticides, and fumigants for soil.Computed Properties of C14H21BO4
Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem