Simple exploration of 1-Bromo-2-(2-bromoethoxy)ethane

According to the analysis of related databases, 5414-19-7, the application of this compound in the production field has become more and more popular.

In the chemical reaction process, reaction time, type of solvent, can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product. An updated downstream synthesis route of 5414-19-7 as follows. 5414-19-7

Under argon, 100 mg (0.30 mmol) of (4S)-1-(4-aminophenyl)-8-methoxy-N,4-dimethyl-4,5-dihydro-3H-2,3-benzodiazepine-3-carboxamide (Example 53.2A) were dissolved in 4 ml of N,N-dimethylacetamide, and 103 mg (0.44 mmol) of 1-bromo-2-(2-bromoethoxyl)ethane and 0.1 ml (0.59 mmol) of diisopropylethylamine were added. The mixture was stirred at 120 C. for three days. The reaction was added to water and extracted three times with ethyl acetate. The solvent was removed on a rotary evaporator and the residue was purified by flash chromatography. This gave 95 mg (79% of theory) of the desired product. [2019] UPLC/MS (Method 2): Rt=1.18 min; m/z=409 (M+H)+ [2020] 1H-NMR (300 MHz, CDCl3): delta=1.07 (d, 3H), 2.72 (dd, 1H), 2.86 (d, 3H), 2.95 (dd, 1H), 3.25 (m 4H), 3.71 (s, 3H), 3.89 (m, 4H), 5.19-5.30 (m, 1H), 6.12 (m, 1H), 6.67 (d, 1H), 6.89 (dd, 1H), 6.92 (d, 2H), 7.15 (d, 1H), 7.51 (d, 2H).

According to the analysis of related databases, 5414-19-7, the application of this compound in the production field has become more and more popular.

Reference:
Patent; BAYER PHARMA AKTIENGESELLSCHAFT; Siegel, Stephan; Baeurle, Stefan; Cleve, Arwed; Haendler, Bernard; Fernandiez-Montalvan, Amaury Ernesto; Moenning, Ursula; Krause, Sabine; Lejeune, Pascale; Schmees, Norbert; Busemann, Matthias; Holton, Simon; Kuhnke, Joachim; US2015/203483; (2015); A1;,
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem