Continuously updated synthesis method about 104750-60-9

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. We look forward to the emergence of more reaction modes in the future.

Reference of 104750-60-9, A common heterocyclic compound, 104750-60-9, name is 2-Bromo-1-(methoxymethoxy)-4-methylbenzene, molecular formula is C9H11BrO2, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route.

2-Bromo-1-(methoxymethoxy)-4-methylbenzene (2.3 g, 9.95 mmol) from Example I-122A was dissolved in tetrahydrofuran (39.8 mL), and Q-Phos (1,2,3,4,5-pentaphenyl-1′-(di-tert-butylphosphino)ferrocene) (0.141 g, 0.199 mmol) and bis(dibenzylideneacetone)palladium (0.114 g, 0.199 mmol) were added. The reaction was sparged with nitrogen 10 minutes. A solution of freshly-prepared (1-(methoxycarbonyl)cyclopropyl)zinc(II) bromide (45.2 mL, 19.91 mmol) in tetrahydrofuran was added dropwise. The reaction mixture was stirred at 50 C. for 30 minutes and at 45 C. for 15 hours. The reaction was cooled to ambient temperature and quenched with saturated aqueous ammonium chloride (40 mL). The mixture was diluted with methyl tert-butyl ether. The aqueous layer was extracted once with methyl tert-butyl ether. The combined organic layers were washed with brine, dried over sodium sulfate, filtered and concentrated. The crude material was purified by flash column chromatography, eluting with 0-20% ethyl acetate/heptanes to provide the title compound. 1H NMR (501 MHz, chloroform-d) delta ppm 7.06-6.99 (m, 2H), 6.97 (d, J=8.1 Hz, 1H), 5.16 (s, 2H), 3.60 (s, 3H), 3.45 (s, 3H), 2.28 (s, 3H), 1.63-1.57 (m, 2H), 1.12 (q, J=4.1 Hz, 2H)+

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. We look forward to the emergence of more reaction modes in the future.

Reference:
Patent; AbbVie S.a.r.l.; Galapagos NV; Altenbach, Robert J.; Bogdan, Andrew; Couty, Sylvain; Desroy, Nicolas; Gfesser, Gregory A.; Housseman, Christopher Gaetan; Kym, Philip R.; Liu, Bo; Mai, Thi Thu Trang; Malagu, Karine Fabienne; Merayo Merayo, Nuria; Picolet, Olivier Laurent; Pizzonero, Mathieu Rafael; Searle, Xenia B.; Van der Plas, Steven Emiel; Wang, Xueqing; Yeung, Ming C.; (189 pag.)US2019/77784; (2019); A1;,
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem