Cas: 2657-87-6 was involved in experiment | High Performance Polymers 2017

3-(4-Aminophenoxy)aniline is one of ethers-buliding-blocks. Ethers feature bent C–O–C linkages. In dimethyl ether, the bond angle is 111° and C–O distances are 141 pm. The barrier to rotation about the C–O bonds is low. COA of Formula: C12H12N2O The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.

Zhou, Haoran;Wang, Dexin;Qu, Chunyan;Liu, Changwei;Mao, Shanshan published 《Preparation and characterization of a copper@polyimide core-shell structure via an in situ induction/imidization route》. The research results were published in《High Performance Polymers》 in 2017.COA of Formula: C12H12N2O The article conveys some information:

Based on the combination of an in situ induction and imidization method for improving the interface bonding of an inorganic material and a polymer, copper/polyimide (Cu/PI) core-shell composite particles have been successfully prepared from poly(amic acid) ammonium salts (PAAS) and a Cu complex via a simple solvothermal process. The structures and the morphologies of the samples were characterized by XPS, X-ray diffraction, SEM and transmission electron microscopy (TEM), resp. It was found that PAAS formed PI via a thermal imidization and subsequently precipitated in the solvent. Through crystallization induction, it then successfully coated on the surface of the formed Cu particles. Based on thermo gravimetric analyses curves and due to no Cu oxidation reactions taking place in the core coated with high-temperature-resistant PI, the weight increase was determined to be 106.4%, instead of up to 124.0% in samples consisting of pure Cu. To complete the study, the researchers used 3-(4-Aminophenoxy)aniline (cas: 2657-87-6) .

3-(4-Aminophenoxy)aniline is one of ethers-buliding-blocks. Ethers feature bent C–O–C linkages. In dimethyl ether, the bond angle is 111° and C–O distances are 141 pm. The barrier to rotation about the C–O bonds is low. COA of Formula: C12H12N2O The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp3.

Reference:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem