Double N,B-Type Bidentate Boryl Ligands Enabling a Highly Active Iridium Catalyst for C-H Borylation was written by Wang, Guanghui;Xu, Liang;Li, Pengfei. And the article was included in Journal of the American Chemical Society in 2015.Reference of 365564-07-4 This article mentions the following:
Boryl ligands hold promise in catalysis due to their very high electron-donating property. In this communication double N,B-type boryl anions were designed as bidentate ligands to promote an sp2 C-H borylation reaction. A sym. pyridine-containing tetraaminodiborane(4) compound was readily prepared as the ligand precursor that could be used, in combination with [Ir(OMe)(COD)]2, to in situ generate a highly active catalyst for a broad range of (hetero)arene substrates including highly electron-rich and/or sterically hindered ones. This work provides the 1st example of a bidentate boryl ligand in supporting homogeneous organometallic catalysis. In the experiment, the researchers used many compounds, for example, 2-(3,5-Dimethoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (cas: 365564-07-4Reference of 365564-07-4).
2-(3,5-Dimethoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (cas: 365564-07-4) belongs to ethers. Ethers are good solvents partly because they are not very reactive. Most ethers can be cleaved, however, by hydrobromic acid (HBr) to give alkyl bromides or by hydroiodic acid (HI) to give alkyl iodides. Electron-deficient reagents are also stabilized by ethers. For example, borane (BH3) is a useful reagent for making alcohols. Pure borane exists as its dimer, diborane (B2H6), a toxic gas that is inconvenient and hazardous to use. Borane forms stable complexes with ethers, however, and it is often supplied and used as its liquid complex with tetrahydrofuran (THF).Reference of 365564-07-4
Referemce:
Ether – Wikipedia,
Ether | (C2H5)2O – PubChem